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DEA Efficiency Analysis Involving Multiple 
Production Processes 
With an Application to Urban Mass Transit  
 
Abstract 
 
This paper addresses Data Envelopment Analysis (DEA) efficiency analysis in 
organizations with multiple production processes.  It shows how to measure the impact 
on an organization’s overall efficiency of (a) inefficient and superefficient subunits, and 
(b) the efficiency with which input resources are allocated to the subunits.  It introduces 
a simple model for efficiently allocating inputs among subunits, and applies the entire 
analytical process to a large urban mass transit agency.   
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INTRODUCTION   

Organizations usually operate multiple production processes, each process supported 

by its own set of resource inputs.  Multiple production processes can be nonjoint, or networked 

in various ways such as joint-interrelated and sequential, and inputs can be allocable or 

nonallocable to multiple outputs (Beattie and Taylor, 1985; Färe and Grosskopf, 2000; Barnum 

and Gleason, 2006a).  

Many recent Data Envelopment Analysis (DEA) articles have addressed the efficiency of 

Decision Making Units (DMUs) with multiple production processes or subunits.  One set of 

articles suggests methods for maximizing a DMU’s reported efficiency when compared to its 

peer DMUs by assigning hypothetical shares of nonallocable input costs subunits (Yu, 2007). 

A second set of articles addresses the physical re-allocation of allocable inputs to those subunit 

outputs that will maximize the DMU’s efficiency (Beasley, 2003; Lozano, Villa and Adenso-Diaz, 

2004; Lozano and Villa, 2004; Lozano and Villa, 2005; Fang and Zhang, 2007; Nesterenko and 

Zelenyuk, 2007).  Efficiency comparisons involve only subunits within one organization (intra-

DMU comparisons), and assume that the DMU’s subunit production technologies are identical 

(Nesterenko and Zelenyuk, 2007)  

There are issues that that have not been addressed by either set of articles, but that are 

important for informing decision makers about how to maximize a target DMU’s efficiency.  It 

would be useful to know which of a target DMU’s subunits are inefficient, efficient or 

superefficient compared to subunits with the same production technologies in other 

organizations, and the impact of each of these subunits’ inter-DMU efficiency on the target 

DMU’s efficiency.  It also would be useful to know whether allocable input resources are 

currently being efficiently allocated among the target DMU’s subunits when compared to other 

DMUs’ allocations and the impact of inefficient allocation on the target DMU’s efficiency.  
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This paper introduces a DEA procedure that addresses the preceding issues, thereby 

contributing to a series of articles in Applied Economics and Applied Economics Letters that 

deal with the impact of disaggregation on efficiency measurement (Tauer, 2001; Färe and 

Zelenyuk, 2002; Diez-Ticio and Mancebon, 2002; Färe, Grosskopf and Zelenyuk, 2004; Barnum 

and Gleason, 2005; 2006a; 2006b; 2007; Yu, 2007). 

DISAGGREGATING DMU EFFICIENCIES INTO SUBUNIT EFFICIENCIES    

 Suppose we wish to analyze eight DMUs and two production technologies.  Each DMU 

has two subunits with the first subunit producing with the first technology and the second 

subunit producing with the second technology. Each type of subunit (technology) produces one 

output using two inputs.  The same kind of output is produced by both subunits, and they both 

use the same two kinds of inputs.  (We have used a simple example to make our illustration 

intuitively clear, but similar results occur for any number of subunits, inputs, and outputs.)  Data 

for all eight DMUs by technology/subunit type are presented in Table 1. 

 

Table 1.  Data for Eight DMUs by Subunit Type 

                    
 Type 1 Subunits Type 2 Subunits  Total DMU DMU 
 Input 1 Input 2  Input 1 Input 2  Input 1 Input 2 

A  16 80  16 80  32 160 
B  18 60  18 60  36 120 
C  40 35  40 35  80 70 
D  62 10  62 10  124 20 
E  100 6  100 6  200 12 
F  17.5 65  16.5 75  34 140 
G  16.5 75  81 8  97.5 83 
H   28 16  56 32  84 48 

Note:  Output is 1 for each subunit and 2 for each DMU. 
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Graphical Introduction     

Figure 1 reflects DMU efficiencies, and Figures 2 and 3 show subunit efficiencies.  DMU 

C is inefficient overall; its Subunit 2 is efficient, but its Subunit 1 is not.  DMU H appears to be 

efficient when looking at DMU efficiency, but its Subunit 1 is superefficient and its Subunit 2 is 

inefficient; because the input it saves in Subunit 1 exceeds the input it wastes in Subunit 2, it is 

on the overall frontier.  Both of G’s subunits are efficient, but the DMU is not.  This occurs 

because the DMU’s subunits employ different rates of technical substitution (RTS) between their 

inputs, as shown by the differing isoquant slopes at their points of production.  Unless input 

RTSs are equal across all of a DMU’s subunits, the DMU will have misallocated its inputs 

among subunits, and therefore will require more input than necessary for its levels of output 

(Barnum and Gleason, 2006a). 

Figure 1.  DMU Efficiencies 
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Figure 2.  Type 1 Subunit Efficiencies 
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Figure 3.  Type 2 Subunit Efficiencies 
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Steps in DEA Analysis   

In order to mathematically identify the causes of a target DMU’s efficiency level and the 

effect of each cause on the DMU’s overall efficiency, a number of steps are necessary.  In all 

DEAs, the target DMU or target subunit is being compared with all of its peers; for DMU 

efficiency, all DMUs are being compared and for subunit efficiency, all subunits of the same type 

from all DMUs are being compared. We assume an input orientation, but the steps can be 

changed to reflect an output orientation. 

1. Compute DMU efficiency (subunit inputs and outputs aggregated) for the target DMU. 

[Scores identify the target DMU’s overall efficiency.] 

2. Compute Subunit efficiency by subunit/technology type for each subunit of the target 

DMU, using each subunit’s own inputs and outputs.  [Scores identify each subunit as 

inefficient, efficient, or superefficient when compared to its subunit peers.]  

3. For a target DMU with one or more inefficient subunits, do the following separately for 

each inefficient subunit.  

a. Proportionally lower the inputs of the inefficient subunit to the point that the 

subunit is efficient ( 1θ = ). 

b. Using the lowered inputs for the single originally-inefficient subunit of the target 

DMU, and the original inputs for all other subunits of both the target and the 

remaining DMUs, compute the revised DMU efficiency score for the target DMU.  

[The difference between the revised DMU efficiency and the original DMU 

efficiency estimates the effect of the inefficient subunit on the target DMU.]  

4. For a target DMU with one or more superefficient subunits, do the following separately 

for each superefficient subunit.  

a. Proportionally increase the inputs of the superefficient subunit to the point that 

the subunit is efficient ( 1θ = ).  
5
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b. Using the higher inputs for the single originally-superefficient subunit of the target 

DMU, and the original inputs for all other subunits of both the target and the 

remaining DMUs, compute the revised DMU efficiency score for the target DMU.  

[The difference between the revised DMU efficiency and the original DMU 

efficiency will estimate the effect of the superefficient subunit on the target DMU.] 

5. For all DMUs, not just the target DMU, do the following simultaneously. 

a. For all inefficient subunits, proportionally lower their inputs to the point that each 

is efficient ( 1θ = ). 

b. Using the lowered inputs for all originally-inefficient subunits, and the original 

inputs for all originally efficient and superefficient subunits, compute DMU 

efficiency (subunit inputs and outputs aggregated) for the target DMU.  [If a target 

DMU’s score is one or greater ( 1θ ≥ ), the target DMU is allocatively efficient 

when compared to its peer DMUs, as Barnum and Gleason (2006a) 

demonstrate]. 

Application   

We next apply these steps to our data.  Efficiency scores for the first two steps are 

computed with a linear program (1-5), which is input oriented and assumes constant returns to 

scale.  The DEAs are conducted with Scheel’s EMS software (2000).  For each observation 

 there are data on inputs and on 1,...,j = J N M1,...,n = 1,...,m = outputs, where 

1( ,..., )j N
j jNx x x += ∈ 1( ,..., )j M

j jMy y y += and ∈ .  The DEA score θ  estimates the technical 

superefficiency of the target DMU k (Andersen and Petersen, 1993).   

minθ
λ

    (1)  

 subject to 
1

J

jn j kn
j

x xλ θ
=

≤∑ 1,...,n N=   (2) 
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1

J

jm j km
j

y yλ
=

≥∑ 1,...,m M=     (3) 

0kλ =    (4)   
0jλ ≥ 1,... ;j J j k= ≠   (5)   

 

All DMUs but C and G are reported to be technically efficient in Step 1, with C’s 

efficiency being 0.92 and G’s 0.76.  There are two types of subunits with eight observations in 

each, so one set of DEAs in Step 2 involves the subunits of the first type and the other set 

involves subunits of the second type.  All subunits of DMUs A, B, D, E, F and G are efficient 

(Table 2). 

Table 2.  DMU and Subunit Efficiency Scores, Original Data 

  Type 1 Subunits Type 2 Subunits DMU 
A 1.03 1.03 1.06 
B 1.02 1.14 1.09 
C 0.66 1.00 0.92 
D 1.07 1.21 1.27 
E 1.67 1.33 1.67 
F 1.00 1.00 1.00 
G 1.00 1.00 0.76 
H 1.68 0.84 1.12 

 

Now, consider DMU C, which Step 1 reports to have an overall technical efficiency of 

0.92. Step 2 tells us that C has one inefficient subunit, Subunit 1, which has a technical 

efficiency of 0.66.  The effect on the DMU’s overall efficiency is the difference between the 

DMU’s score in step 3, which is 1.10, and its original efficiency score of 0.92.  The 0.18 

difference indicates how much the DMU’s efficiency can be improved by improving its Subunit 1 

efficiency.   

DMU H’s original aggregated superefficiency score was 1.12, with step 2 reporting that 

its Subunit 1 score is 1.68 and its Subunit 2 score is 0.84.  Decreasing the inputs of Subunit 2 
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(Step 3) increases H’s overall score from 1.12 to 1.25, a difference of 0.13.  Increasing the 

inputs of Subunit 1 (Step 4) decreases H’s overall score from 1.12 to 0.91, a difference of 0.23.  

Thus, the increase in efficiency of DMU H resulting from the superefficient Subunit 1 exceeds 

the decrease in efficiency resulting from the inefficient Subunit 2 (0.23 > 0.13).  So, if a choice 

has to be made between maintaining Subunit 1’s superefficiency at its current level, or making 

Subunit 2 efficient, the former would be the better choice.  

Now, consider DMU G, whose subunits are both efficient (Step 2) although the DMU 

itself is inefficient (0.76) (Step 1).  Steps 3 and 4 are inapplicable, so we proceed to Step 5.  

DMU G’s Step-5 score is 0.69, so its inefficient allocation yields a DMU efficiency that is 0.31 

lower than it should be, given both subunits are efficient.  Thus, the only action necessary is to 

reallocate inputs between subunits of DMU G.  Returning to Figures 2 and 3, G’s two inputs can 

be reallocated to any point on the subunits’ respective isoquants such that their RTSs are closer 

together than any efficient peer.  (That is, the RTSs don’t have to be exactly equal, but they 

must be closer to being equal than any benchmark competitors.)  We now provide a 

methodology by which DMU G can reallocate its inputs between its two subunits, to decrease 

the total input amounts needed to produce its current level of outputs. 

IMPROVING ALLOCATION EFFICIENCY 

When a DMU has a high ratio of subunits to inputs-plus-outputs, and assigns each 

production process to its own subunit, then it may be possible to use “input allocation” models to 

measure and improve allocation efficiency  (Beasley, 2003; Lozano, Villa and Adenso-Diaz, 

2004; Lozano and Villa, 2004; Podinovski, 2004; Lozano and Villa, 2005; Podinovski, 2007; 

Fang and Zhang, 2007; Nesterenko and Zelenyuk, 2007).  In the present case, however, as 

would be true in many industries, there would be too few subunits to make these input allocation 

models practical. 
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Accordingly, we provide a mathematical programming model that can be used to 

improve allocation efficiency in these cases.  Our objective is to minimize inputs.  We want to 

insure that each subunit will not produce less output, and that the DMU will not use more of any 

input than is currently available.  Changes in input values cause changes in the output values, 

so it is not possible to reallocate the inputs without taking into account the effects on outputs.  

Unless we know the true functional relationships between inputs and outputs for each 

production process, it is necessary to estimate them using suitable econometric methods.  If the 

estimated relationships are all linear, then linear programming can be used to minimize inputs.  

If the estimated relationships are not linear, then nonlinear programming must be used.  In 

either case, mathematical program 6- 10 applies. 

_
1

_
ˆ 1
min

m nm

M

nm
m

N

y x n
x

==
∑∑     (6) 

 subject to 
1

M

nm n
m

x ι
=

≤∑ 1,...,n N=  (7) 

ˆm my ω≥ 1,...,m M=     (8) 

0nmx ≥ 1,..., ; 1,...n N m M= =   (9) 

ˆ ( )m ny f x m= 1,...,m M=     (10) 
     
 

The objective function minimizes the sum of all N inputs used to produce the M outputs, 

where  is the amount of input n used to produce output in subunit , and m ˆmynmx is the revised 

value of output .  Constraint set 7 insures that the sum of the reallocated inputs will not 

exceed the current availability of the input,

m

nι .  Constraint set 8 requires that the revised value of 

each output, ˆmy , is at least as great as the original value of that output, mω .  Constraint set 9 

requires that the amount of each input used by each of the outputs be non-negative.  Constraint 
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set 10 estimates the revised value of each of the outputs based on the values of its inputs and 

the estimated relationship.   

For DMU G, mathematical program 6-10 was solved using the mathematical 

programming module (Solver) in Excel 2002, which uses the generalized reduced gradient 

method to solve nonlinear problems (Fylstra et al., 1998).  Revised output values for subunits of 

DMU G were estimated based on equation 11. 

* *
1 2ˆln( ) 3.4198 0.60302ln( ) 0.40004ln( )m my x= − + + mx 1,2m =   (11)

 
 

DMU G’s use of Input 1 can be reduced from 97.5 to 70.6, and its use of Input 2 can be 

reduced from 83 to 46.8, while maintaining the original levels of outputs in both subunits, if it 

reallocates its inputs so each subunit receives 35.3 units of Input 1 and 23.4 units of Input 2.  As 

a result, DMU G’s Step 1 efficiency increases from 0.76 to 1.07, an increase of 0.31. 

APPLICATION TO AN URBAN TRANSIT AGENCY 

Large U.S. urban transit agencies can provide on-the-street service with up to four 

technologies/ subunits: self-operated demand-responsive service, outsourced demand-

responsive service, self-operated fixed-schedule service, and outsourced fixed-schedule 

service.  The Maryland Transit Administration (MTA) uses all four options. We conducted a DEA 

with the MTA as the target DMU, using 2006 data from 52 transit systems with 150 or more 

vehicles.  Estimated seat-hours for each of the four subunits was used as the output, and 

operating expenses adjusted for price differences as the input  (United States Federal Transit 

Administration, 2007). Thus, the MTA had four production technologies (or subunits), each 

utilizing one input to produce one output.  

The MTA’s Step 1 DMU technical efficiency was  0.67, and its Step 2 subunit technical 

efficiencies were 0.29 for self-operated demand-responsive service (lowering DMU efficiency by 
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0.02), 0.63 for outsourced demand-responsive service (lowering DMU efficiency by 0.03), 0.70 

for self-operated fixed-schedule service (lowering DMU efficiency by 17.5), and 0.23 for 

outsourced fixed-schedule service (lowering DMU efficiency by 0.06).  Thus, it would appear 

that the biggest increase in MTA efficiency could be made by improving the subunit that already 

has the highest efficiency, self-operated fixed-schedule service.  The MTA was almost 

completely efficient in allocating its resources to its four subunits, as evidenced by the result of 

Step 5, in which its DMU efficiency, when all subunits of all 52 agencies had been made 

efficient, was 0.99.  This value can be improved however with a reformulation of mathematical 

program 6-10 (model 12-18), where 1N =  because there is a single input:   

__

4

1
m̂in

m
m

m my x
x

=
∑    (12)  

 subject to 1 1
1

M

m
m

x ι
=

≤∑   (13) 

4 4

1 1

ˆ
m m

m my ω
= =

≥∑ ∑     (14) 

ˆ 0.2m my y≥ 1,2,3,4m =     (15) 
2 2

1 1

ˆ 0.9
m m

m my ω
= =

≥∑ ∑     (16) 

1
* 0mx ≥ 1,2,3,4m =  (17)    

1
*ˆ ( )m my f x= 1,2,3,4m =  (18)    

 

( 1N )=In this case, there is only one type of input , which is to be allocated among the 

1m = 2m =4M = production processes.  That is,  is self-operated demand-responsive service,  

is outsourced demand-responsive service, 3m =  is self-operated fixed-schedule service, and 

is outsourced fixed-schedule service.  Constraint 13 requires that the total of the 

reallocated single input not exceed the input’s original value.  Constraint set 14 requires that the 

total output not decline.  Constraint set 15 requires that each process retain at least 20 percent 

4m =
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of its original service (for political reasons) and constraint 16 requires that demand-responsive 

operations retain at least 90 percent of the service by that mode (under the assumption that 90 

percent of the riders would be physically incapable of using other transit).  Panel Data Analysis 

of the four modes for all 52 systems for 2002-2006 resulted in four estimation equations for the 

relationships between input-output pairs, each adjusted for the MTA subunits’ levels of 

efficiency (constraint set 18).  

Applying model 12-18 to the problem results in the following input reallocation 

recommendations.  The agency should decrease self-operated demand-responsive service by 

80 percent, increase outsourced demand-responsive service by 1 percent, decrease outsourced 

fixed-schedule transit by 80 percent, and increase self-operated fixed-schedule transit by 12 

percent.  This leaves the total number of seat-hours the same and decreases annual expenses 

by $11 million, which is 4.4 percent of the 2006 expenditures.  As a result of these changes, 

DMU efficiency would increase from 0.67 to 0.70.  Obviously, there may be practical, legal or 

political reasons why the recommended re-allocations cannot be fully implemented, but the 

suggested changes do inform management of the directions to be pursued for efficiency gains.   

SUMMARY  

This paper presents a new procedure for identifying and correcting internal causes of a 

multi-product DMU’s inefficiency.  The procedure makes it possible to evaluate the inter-DMU 

efficiency of the subunits responsible each of the input-to-output transformation processes, 

whether input resources are efficiently allocated among a target DMU’s subunits, and the impact 

of subunit allocations, inefficiencies and superefficiencies on their DMU’s overall efficiency.  

Further, it introduces a new model for efficiently allocating inputs among a DMU’s subunits 

when the number of subunits is small, and demonstrates the process with an urban transit 

example.   
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