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Comparing the Performance of Urban Transit Bus 
Routes after Adjusting for the Environment,  
Using Data Envelopment Analysis 
 
Abstract 
 
Urban transit managers strive to attain multiple goals with tightly constrained resources.  
Ratio analysis has evolved into a powerful tool for dealing with these goals and 
constraints.  Ratio analysis provides analytical methods for comparing the performance 
of multiple agencies, as well as the performance of subunits within a particular agency, 
in order to identify opportunities for improvement.  One ratio analysis procedure that has 
become increasingly popular is Data Envelopment Analysis (DEA).  DEA yields a single, 
comprehensive measure of performance, the ratio of the aggregated, weighted outputs 
to aggregated, weighted inputs.  This paper makes two contributions to the practice of 
urban transit performance evaluation using DEA.  First, instead of using DEA to 
compare the performance of multiple transit systems, it uses DEA to compare the 
performance of multiple bus routes of one urban transit system.  Second, it introduces a 
new procedure for adjusting the raw DEA scores that modifies these scores to account 
for the environmental influences that are beyond the control of the transit agency.   
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INTRODUCTION 

     Data Envelopment Analysis (DEA) is being increasingly used to analyze urban transit agency 

performance.  De Borger, Kerstens and Alvaro (2002) identify 15 articles published prior to 

2001, and since then at least 15 more have been published or are in press (Boilé 2001; Nolan et 

al. 2001; Novaes 2001; Odeck and Alkadi 2001; Pina and Torres 2001; De Borger et al. 2002; 

Nolan et al. 2002; Karlaftis 2003; Boame 2004; Karlaftis 2004; Brons et al. 2005; Sheth et al. 

2006; Graham 2006; Barnum et al. 2006; Odeck 2006).  Many of the techniques and 

applications that appear in these articles serve as the foundation and motivation for this paper.  

These are discussed in the following two sections. 

     One advantage of DEA in the analyses of urban transit performance is well-stated in one of 

the earliest urban transit DEA studies.  Chu, Fielding and Lamar (1992, p. 224) advise that 

“performance analysis needs to progress from multiple measures and partial comparison to 

more robust indicators of performance . . . so that the achievements of one agency can be 

examined in reference to peer group agencies.”  DEA provides a single, comprehensive 

measure of an agency’s technical efficiency, that is, the ratio of its aggregated, weighted outputs 

to its aggregated, weighted inputs.   

     Another advantage of DEA is the method by which it assigns weights to inputs and outputs.  

DEA uses linear programming to assign weights in an objective, economically sound manner 

(Färe et al. 1994; Cooper et al. 2004; Färe and Grosskopf 2004).  The final DEA weights are 

different for every unit being analyzed.  Each unit’s final weights are assigned so it will attain the 

best possible score when it is compared to peer units that temporarily are assigned the same 

set of weights.  If the focus unit does not score 100 percent, this tells us that its peers are still 

more productive even when the weights of all are set to maximize the score of the focus unit.  

So, not only is there sound economic justification for the weights assigned, but also no 
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inefficient unit can complain that its score would have been better if only a different set of 

weights were used.  Thus, as Chu, Fielding and Lamar (1992) recognized, DEA is uniquely 

equipped to fulfill the need for an overall, objective, summary performance indicator. 

With this paper, we illustrate two techniques that we think will become common in urban transit 

DEA applications for both research and practice.  First, we apply DEA to the actual bus route 

data of an urban transit agency, illustrating the value of and the methodology for using DEA to 

compare subunits of urban transit systems.  Second, we illustrate an improved method for 

modifying DEA scores to account for environmental differences among those routes being 

analyzed. 

     In the next section we describe the value of analyzing subunits with DEA, and in the 

following section we evaluate methods that can be used to adjust DEA scores for environmental 

differences.  Then, we discuss the analysis of subunits.  We describe our inputs and outputs.  

We present our statistical models and use them to adjust the outputs for external influences.  

We then present our DEA model and conduct the DEAs.  Finally, we present and discuss the 

results, and then conclude the paper. 

VALUE OF ANALYZING ORGANIZATIONAL SUBUNITS WITH DEA 

     The unit of analysis usually is called a Decision Making Unit (DMU).  Although treating entire 

transit systems as the DMUs is very helpful in comparing different agencies, it does little to help 

a given agency evaluate its internal activities, especially those with multiple objectives.   

For example, multiple quality and quantity objectives apply to bus operations on a given route.  

These objectives may include directives such as minimize service interval, maximize span of 

service, maximize passenger trips, maximize passenger revenue, maximize on-time 

performance, and many others, constrained, of course, by budget (Benn 1995).  A single 

composite indicator that fairly and objectively aggregates such various activities, so the 
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performance of bus routes could be validly compared, would be very useful.  Such an indicator 

would quickly pinpoint any route whose overall performance was low.  This would allow 

management by exception, that is, management would not have to continuously monitor many 

indicators for all routes, but could react to those routes that clearly were troubled.  Also, it would 

provide a valuable indicator for planners as they attempted to improve the route structure to 

enhance future performance.  DEA indicators could fulfill this need for a summary measure of 

parallel internal activities, just as it has been useful in comparing entire agencies.  

     DEA comparisons of organizational subunits are common in other industries (Cooper et al. 

2004).  However, all but two of the 30 transit articles cited in our first paragraph have used 

entire transit systems as the unit of analysis.  Sheth, Triantis and Teodorovic (2006) suggest an 

innovative method that combines DEA and goal programming to compare bus routes, 

demonstrating their procedure with artificial, simulated data.  Barnum, McNeil and Hart (2006) 

combine DEA and Stochastic Frontier Analysis to compare park-and-ride lots, using data from 

the Chicago Transit Authority.  Tandon (2006) uses DEA to compare bus routes using data from 

a large American bus system.  This paper is a continuation of the fruitful trend of analyzing 

subunits in order to improve urban transit performance, and is based on Tandon’s (2006) data, 

research and thesis. 

CORRECTIONS FOR ENVIRONMENTAL INFLUENCES 

Another important issue for DEA is the need to identify environmental influences in order to 

explain variations in efficiency caused by factors external to the DMUs.  It is important for policy 

purposes, and it is needed in order to adjust for exogenous factors so one can correctly 

evaluate the endogenous efficiency of individual DMUs.  Endogenous efficiency often is called 

managerial efficiency or true efficiency, because it represents the efficiency under the agency’s 

control.  Exogenous influences usually are called environmental influences or contextual 

influences. 
3
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The Two-Stage Method 

In transit DEA applications, the “two-stage method” has been used to identify exogenous 

influences beyond the control of the DMUs (Nolan 1996; Kerstens 1996; Viton 1997; Nolan et al. 

2001; Odeck and Alkadi 2001; Pina and Torres 2001; Boame 2004; Barnum et al. 2006; Odeck 

2006).  With this procedure, a DEA is first conducted using only traditional inputs and outputs.  

In the second stage, most commonly the DEA scores are regressed on the exogenous variables 

of interest.  The regression outcomes are used to identify exogenous factors that influence the 

first-stage DEA scores to a statistically significant degree.  In a few of the articles (Viton 1997; 

Odeck and Alkadi 2001; Odeck 2006), the second stage has been more limited, comparing the 

mean efficiencies of categorical groups for statistically significant differences.  However, only 

one of these articles uses its statistical results to estimate each DMU’s endogenous efficiency 

(Barnum et al. 2006), which is needed if one wishes to compare DMUs.  

Although it has been long suspected (Grosskopf 1996), Barnum and Gleason (2006a) 

recently have demonstrated that the two-stage procedure can exhibit substantial bias, low 

precision, and low power.  Barnum and Gleason’s results were based on asymptotic 

assumptions.  However, the use of bootstrapping methods with the two-stage procedure (Simar 

and Wilson 2007) also has been shown to have low power in detecting true relationships 

(Zelenyuk 2005). 

The Exclusion Method 

An alternate approach to adjust DEA scores for exogenous influences is a procedure we call 

the exclusion method.  Under the exclusion method, each target DMU is compared only to those 

other DMUs in the set that have an equal or less favorable environment (Ruggiero 2004a; 

Ruggiero 2004b; Muniz et al. 2006).  An index is generated that aggregates the combined effect 
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of environmental influences, with the variables defined so that larger values denote a less 

favorable environment (Equation 1).   
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iβIn Equation 1,  is the value of exogenous influence i for DMU j, jiz  is the weight measuring 

the strength of the effect of exogenous influence i on the efficiency of any DMU, and is the 

aggregated effect of exogenous influences on DMU j.  The 

jz

iβ  can be defined by expert 

judgment or other means (Sheth et al. 2006).  In the subsequent DEA, DMU j is compared only 

to those DMUs k where . j kz z≤

Unfortunately, this procedure has even more serious shortcomings than the two-stage 

method.  The DMU with the highest z-score is compared only to itself, so it will always be 

reported efficient, regardless of its true endogenous efficiency level.  Likewise, if there are m 

inputs and n outputs, then the m+n DMUs with the highest z-scores have a very high probability 

of being found efficient by random chance, regardless of their true efficiency.  This is because of 

the well-known “curse of dimensionality” that afflicts deterministic methods such as DEA 

(Cooper et al. 2000; Simar and Wilson 2000).   

Sheth, Triantis and Teodorovic’s (2006) simulation illustrates the problem.  Their randomly-

generated data means that there is no relationship between the environmental index and 

endogenous efficiency, so each DMU should have an equal probability of being found efficient 

after accounting for environmental factors.  In fact, for the Variable Returns to Scale model, 

eight of the DMUs with the top ten z-scores were reported efficient, including of course the first 

one.  Of the remaining 50 DMUs in their sample, only 14 were reported efficient.  For the 

Constant Returns to Scale model, 6 of the top 10 were reported efficient and only 3 of the 

bottom 50 attained efficiency.       
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It is not only those DMUs with the worst environments whose DEA scores will be biased 

toward greater efficiency than truth.  A favorable bias from a different source will be present for 

all of the DMUs.  Suppose there are two DMUs that have equal endogenous efficiency.  But, 

DMU B operates in a “Bad Environment” while DMU G enjoys a “Good Environment.”  So, 

although they have equal endogenous efficiency, B will need more resources than G to produce 

the same amount of outputs.  If G were to be compared to B, then because B uses more 

resources, G’s reported efficiency score would be biased in the favorable direction.  The amount 

of bias will vary, depending on the size of the environmental differences between a target DMU 

and its benchmark peers.  And, the bias will increase as the impact of the environment grows.  

Thus, the exclusion method will be most biased and the bias will be most inconsistent when it is 

most needed, where the environment has a large effect.  A final problem is that because the 

score of each DMU is computed from a different set of competitors, the scores of any two DMUs 

cannot be validly compared to each other. 

The Reverse Two-Stage Method   

Without doubt, it is necessary to account for exogenous influences in order to explain 

variations in DEA scores caused by factors external to the DMUs.  Because the conventional 

two-stage method is suspect and the exclusion method is invalid, finding a better alternative 

method is important.   

In this paper, we apply a new method, which in essence reverses the order of the steps of 

the conventional two-stage procedure. The reverse two-stage method has been shown with 

simulated data to yield estimates without the bias, precision and power problems that 

compromise the conventional two-stage method (Barnum and Gleason 2006a).  Perhaps of 

equal importance, the reverse two-stage procedure yields individual DEA scores already 
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adjusted for exogenous influences, so DMUs’ managerial performance can be more easily 

compared.  Below are the steps of the reverse two-stage procedure. 

In the first stage the outputs are adjusted for environmental differences.  Each output is 

regressed on all inputs and the exogenous factors expected to influence it.  For example, 

suppose there is one output, y, M traditional inputs xm, and N exogenous factors zn.  Then, the 

regression to be estimated would be:  

 (2)
1 1 1 1... ...M M N Ny x x z zα β β γ γ= + + + + + +  

 

To finish the first stage, each output is adjusted for environmental differences by removing the 

marginal influence of the statistically significant exogenous variables, that is: 

 (3)
1 1( ... )adj N Ny y z zγ γ= − + + nγ for different from 0 to a statistically significant 

degree 
 

Note that only the expected value of the influence of the exogenous variables is removed; left in 

is the error term and any inefficiency in converting inputs to output. 

In the second stage, the adjusted outputs and inputs are analyzed by DEA, with the resulting 

scores being independent of exogenous effects.  The same procedure could be applied to 

inputs, and more complex regression models should be used where appropriate. 

COMPARISONS OF ORGANIZATIONAL SUBUNITS vs. ENTIRE ORGANIZATIONS 

There are important differences when the unit of comparison is an organizational subunit 

instead of an entire organization.  They involve the influence of environmental variables, and the 

impact of other organizational levels on the subunits being analyzed. 

Influence of Environmental Variables in Comparisons of Organizational Subunits  

It is well known that statistical analysis of multiple organizational levels must proceed 

differently than the analysis of a particular level (Wooldridge 2002; Raudenbush and Bryk 2002; 
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Skrondal and Rabe-Hesketh 2004).  For our case, the factors influencing the response variables 

may differ among levels, and even factors that are the same may have differing effects.   

For example, population density may have a substantial influence on efficiency when 

comparing agencies in different cities, and there is little management can do to affect this 

difference.  But, within a given city, management has control over all of the routes, so it can 

match service levels to the numbers of riders, so even large differences in density might cause 

no differences among routes in efficiency.  That is, management has the ability to adjust service 

for density when all of the routes are under its control, and, if it does so, then all routes could be 

equally efficient regardless of density differences.  Therefore, density might appear to have a 

small empirical effect on efficiency when comparing routes, but might seem to have a large 

empirical effect on efficiency when comparing systems in different cities. 

Of course, public policy often requires that service not fall below a specified minimum in any 

part of a service area regardless of environmental differences, with subsidy revenue expected to 

cover the inevitable losses.  Then, within a given system, we would expect routes in unfavorable 

environments to have lower unadjusted efficiency than routes in favorable environments.  If 

environmental differences were the sole reason for differing efficiency levels, then after those 

environmental differences have been adjusted for, all of the resultant efficiency ratios should be 

equal.  

Thus the meaning of, reasons for, and managerial response to efficiency levels may differ 

when comparing subunits within a transit organization than when comparing entire 

organizations.  

Influence of Other Organizational Levels in Comparisons of Organizational Subunits 

“Managerial efficiency” generally refers to outcomes resulting from the decisions and 

activities of personnel within the entire organization, because typically the organization itself is 
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the DMU.  By analogy, when a DMU is a subunit of an organization, it would seem that the 

efficiency of personnel within each subunit is involved. 

However, when subunits are the DMUs, decisions and activities may occur both within the 

subunit and at higher organizational levels.  Responsibility for managerial performance depends 

on who controls the subunit decisions and activities, and this can depend on the nature of the 

inputs and outputs involved.     

For the particular set of bus route inputs and outputs that we use, the efficiency of each route 

is primarily the result of decisions by the agency’s planners and schedulers, although partly the 

result of the performance of those responsible for the supervision of a given route.  Informed by 

the agency’s service standards, the planners and schedulers determine span of service, 

average frequency and maximum frequency, thereby also influencing seat kilometers and seat 

hours.  And, because of these decisions, they also are partly responsible for ridership levels and 

on-time performance, although responsibility for on-time performance is also affected by the 

activities of personnel within each DMU.   

Based on the DEA, planners and schedulers could adjust the inputs and most outputs to 

change a route’s future efficiency score.  If a route is performing badly on the variables used 

herein, it is not the supervisors of a given route or garage who are primarily responsible, but the 

planners and schedulers who can adjust a route’s inputs and controllable outputs to attain the 

efficiency level desired for that route.   

The main purpose of the DEAs herein, therefore, is to inform agency planners and 

schedulers about efficiency differences, so they can compare the effects of their decisions on 

the various routes, and change inputs and controllable outputs accordingly. However, on-time 

performance also is influenced by personnel at the garage level.  In sum, on-time performance 

is likely to be influenced by (1) scheduling decisions, (2) garage supervision, and (3)  
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environmental conditions. 

In order to better measure the impact of environmental conditions, it would be worthwhile to 

control by garage.  The effect of garage does not tell us the source of performance differences, 

but it does allow us to more validly measure the effect of environment.  Therefore, for the on-

time performance regression, we have added dummy variables (G2, . . . , G6) to identify the 

garage from which each route originates.  The garage with the best on-time performance serves 

as the base, with the dummy variable coefficients reflecting the percentage by which the other 

garages’ on-time performance is lower than the best garage. 

DATA SET, AND INPUTS AND OUTPUTS   

This paper analyses data from 46 bus routes of a United States urban transit agency, 

treating each route as a DMU.  Data on the inputs and outputs are for the Spring 2005 weekday 

trips.   

Inputs are the resources that supply the transit service.  Outputs are the variables that 

measure the use and the quality of transit service.  Only the variables used in this analysis are 

described here, with all of the considered variables being discussed in Tandon (2006). 

Inputs 
 

The seat kilometers (SK) and seat hours (SH) of each route are used as proxies for the 

route’s use of energy, maintenance, labor and capital resources.  These proxies were used for 

several reasons.  First, data on the underlying physical resources were not available at the route 

level.  Second, as discussed by Chu, Fielding and Lamar (1992), the physical resources are 

used to produce transit service (as measured by such variables as vehicle hours or kilometers), 

and transit service is used to produce riders and other consumed outputs.  This flow would 

require two DEAs, one concerning the ratio of produced output to physical inputs, and another 

concerning the ratio of consumed outputs to produced inputs (with the outputs produced in the 
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first step becoming inputs in the second step).  In this paper, we focus on the consumed outputs 

to produced inputs ratio.  Third, DEA assumes that there is substitutability among the inputs 

(Petersen 1990; Barnum and Gleason 2006b).  For transit, such substitutability would mean that 

for a given level of output, a DMU could freely substitute labor for vehicles, or vehicles for fuel.  

In truth, there is extremely limited substitutability in this industry; inputs have to be combined in 

virtually fixed ratios, with any excess wasted.  These facts, combined with the “curse of 

dimensionality” and random noise in the data, mean that disaggregating inputs by physical type 

biases efficiency scores upward.  

Seat kilometers and hours are highly but not perfectly correlated because of speed 

differences and each measures a somewhat different aspect of input usage.  Generally, even if 

two key inputs are highly correlated, both should be included in a DEA (Nunamaker 1985).   

Seat hours and kilometers are used in place of vehicle hours and kilometers to account for the 

different lengths of buses operated by the agency.   

Seat hours are the number of seats on a bus multiplied by the total revenue and non-

revenue hours traveled by all the buses on a particular route during a weekday.   

Seat kilometers are the number of seats on a bus multiplied by the total revenue and non-

revenue kilometers traveled by all the buses on a particular route during a weekday.   

Outputs 

The purpose of this study was to assist the agency management in identifying differences in 

route performance.  DEA scores will be useful to management only if the outputs are chosen to 

reflect the goals of the transit agency, which may not be the goals that interest groups, public 

policy makers, or researchers feel the system should be pursuing (Gleason and Barnum 1982; 

Barnum 1987).  It is important to note that outputs considered key for individual route 

performance may be different than those that are key for the entire system’s performance,  
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another potential difference between organizational and subunit analysis. 

Therefore, agency management chose the outputs.  Five output variables are included in 

the analysis: ridership, span of service, average frequency, maximum frequency, and on-time 

performance.  Whereas transit ridership is a service usage measure, all others are service 

quality measures.   

Ridership (Riders) is the number of unlinked passenger trips.  It also serves as a proxy for 

the farebox revenue generated by the route, because the urban transit agency told us that mean 

fares would be relatively consistent across routes.  Revenue, although sometimes considered 

an input, is an important output according to many transit agencies, given the emphasis often 

placed on farebox recovery rates.   

On-time performance (OTP) is the proportion of observed trips that depart the starting point 

of the trip on time, where “on time” is less than 1 minute early or less than 5 minutes late.   

Span of service is the total minutes per day of transit service provided on a route in one 

direction.  Span of service is a measure of service availability and therefore service quality.  A 

shorter span of service indicates degraded quality of service and can discourage people from 

making certain types of off-peak trips by transit like shopping and entertainment trips.   

Average Daily Service frequency is a measure of how well the route is served throughout 

the day.  It is measured as average number of buses serving a stop every hour and is 

calculated by dividing the total number of runs on a route in both directions by the total span of 

service on that route.   

Maximum Daily Service frequency is the number of buses servicing a stop in the hour with 

the highest frequency.  This measure reflects how well a route is served during peak hours. 
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STAGE ONE:  ADJUSTING THE OUTPUTS FOR ENVIRONMENTAL INFLUENCES 

Under the reverse two-stage method, influences of the environment are removed from the 

outputs before a DEA is conducted.  The applicable outputs are each regressed on the 

traditional input variables and those environmental factors expected to influence them.  The 

outputs are adjusted to remove the marginal effect of the statistically significant environmental 

variables.   

Dealing With Environmental Influences on Ridership and On-time Performance 

Average Frequency, Maximum Frequency and Span of Service are under the direct control 

of management, and therefore should not be adjusted for exogenous influences.   

On the other hand, the number of passenger trips (Riders) is influenced by environmental 

factors not under management control, as is on-time performance (OTP), so these two outputs 

must be adjusted for environmental effects.  The environmental factors used herein are the 

ones that both the agency and the researchers agreed had the most influence on Riders and 

OTP in this case, given the particular set of outputs being used, the available data, and the city 

and the routes involved.  They include the following. 

Population Density (PopDen) is the mean population density within 0.4025 km of a route 

over its entire length.  Population density is expected to influence the on-time performance, 

because denser areas are likely to cause more frequent, unexpected delays.  (The variation in 

density along a route might also be a factor, especially for routes that run through both city and 

suburbs.  Our routes are solely in the city.) 

Population (Pop) is the population within 0.4025 km of the route over its entire length.  

Because it encompasses the number of potential riders, it should be related to the actual 

number of riders.  

Title 6 Routes (T6), as commonly defined by the Federal Transit Administration (FTA), have  
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at least 1/3 of their total route length in census tracts or traffic analysis zones where the 

percentage of minority population greater than the percentage of minority population in the 

entire transit service area.  These routes serve those areas where incomes and car ownership 

often are lower, so people in the area are more likely to be dependent on transit and therefore 

are likely to ride in greater numbers.  Title 6 routes therefore serve as a proxy for routes with 

higher proportions of captive riders.  They are coded as a dummy variable (Title 6 = 1, 

Otherwise=0), and the interaction between population and Title 6 routes  is included 

as an environmental variable.   

(Pop T× 6)

Key Routes (Key) are designated by the transit agency as those routes that are most 

productive as well as some routes necessary to meet geographic coverage standards.  Routes 

not designated as key routes are called service routes.  Service Routes are mainly routes that 

connect key routes or serve rail stations.  The levels of service on service routes are tied to 

demand coming from other public transportation as well as supplemental demand coming from 

the population adjacent to the route.   

Because service routes provide connections to other public transportation, they contribute to 

the demand for the other transportation.  Hence, their value cannot be measured solely by the 

number of passengers they carry, because many of those passengers connect to other routes 

from the service routes.  Thus, it is important to consider their dual role of carrying their own 

riders and carrying riders contributing to other routes’ performance. 

Here is how we deal with the differences between key routes and service routes.  The 

dummy variable (Key) is coded 1 when the route is a key route and 0 when it is a service route.  

The interaction between population and key routes (Pop Key)×  is included as an independent 

variable to estimate the difference between the two route types in the effect of population on  
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ridership. This variable allows us to identify any differences in ridership between the two types 

of routes, and, if differences are found, to remove those differences in the adjusted scores.  In 

this way, service routes are neither advantaged nor disadvantaged by their dual purpose.   

( 6)Pop Key T×Interaction among Key Routes, T6 Routes, and Population × .  Because 

some T6 routes are not key routes, and many key routes are not T6 routes, we also need to 

check for a three-way interaction when a route is both a key route and a T6 route.  

Let us identify the expected effects of the preceding environmental variables on ridership.  

As a result of the dummy variables and their interactions with population and each other, the 

regression coefficient of the variable Pop identifies the effect of population on ridership for 

routes that are neither key nor T6 routes, that is, non-T6 service routes.  These routes are the 

subset of the service routes that do not traverse T6 areas, so the adjacent population plays a 

less important role in supplying riders.  Therefore, we would expect the regression coefficient of 

Pop to be positive, but relatively small.  The regression coefficient of Pop Key× estimates the 

difference between the slope coefficients of the non-T6 service routes and non-T6 key routes.  

The regression coefficient estimates the difference between the slope coefficients of 

T6 and non-T6 service routes.  If any or all of the three regression coefficients are statistically 

significant, we expect them to be positive, because we expect the effect of population on 

ridership for routes that are non-T6 service routes to be the smallest of all.  We don’t predict 

direction of the regression coefficient of the three-way interaction,

6Pop T×

6Pop Key T× × .  If the joint 

effect of Key and T6 routes is greater than the sum of their individual effects, then the coefficient 

will be positive; if their joint effect is less than the sum of their individual effects, then the 

coefficient will be negative; and if their joint effect equals the sum of their individual effects, the 

coefficient will be zero. 
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Additional environmental variables not used here might be important in different 

circumstances.  Some unused variables such as “parking availability” are roughly equal for all of 

our routes.  Other common variables such as employment and employment density did not have 

any measurable influence for these routes, perhaps because the routes’ configuration did not 

result in significant employment variations.  For our study, often-important influences on OTP 

such as time of day and day of week would not be factors, because our OTP variable was the 

mean value from all weekday runs, that is, the values from all times of day and all five weekdays 

were aggregated.  Also, we think that traffic intensity and type of streets would be significantly 

correlated with population density, given that OTP is the mean value for all times of day and all 

weekdays; a substantial part of their effect should be picked up by the regression coefficient of 

population density and thereby will be corrected for in the adjusted DEA scores (Wooldridge 

2002; Greene 2003).  Although these exogenous factors are not expected to influence our 

outputs, in cases where they vary independently they should be used in statistical analyses.   

Regressing the Response Variables on Service Inputs and Environmental Influences  

The two equations to be estimated are as follows: 

1 2 3 4 5 6( ) ( 6) (j j j j j jRiders SH SK Pop Pop Key Pop T Pop Key T 6) jα β β β β β β= + + + + × + × + × × (4)

1 2 3 4 2 5 3 6 4 7 5j j j jOTP SH SK PopDen G G G G G8 6α β β β β β β β β= + + + + + + + +  (5)

 

Before proceeding to the estimations of Equations 4 and 5, we report on tests of the 

hypothesis that the two equations are related, and the hypothesis that the service levels (SH 

and SK) are econometrically endogenous.       

First, we tested the hypothesis that Equations 4 and 5 are related, because there may be 

correlation between unobserved factors common to both equations but not included as 

independent variables.  Such correlation would cause the estimated residuals of the two 
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equations to be correlated.  If this hypothesis is true, then the equations can be estimated jointly 

using Zellner’s Seemingly Unrelated Regression Estimation (SURE) model for systems of 

equations, which will increase the statistical efficiency of the estimates (Zellner 1962).  

Unfortunately, there was neither a statistically significant correlation between the residuals of 

the two equations nor an increase in model fit.  Using Feasible Generalized Least Squares,  

ρ = 0.0271, and Breusch-Pagan test of independence of the errors for the two equations was: 

2χ  =  0.034, Prob (  > 0.034 ) = 0.8541.  Likewise, use of SURE did not increase the 

model fit over that provided by Ordinary Least Squares (OLS).  The SURE and OLS Root Mean 

Squared Errors were the same to five places for both Equation 4 (2792.7) and Equation 5 

(0.06214), and the likelihood ratio test of the increase in fit from the SURE model was  

2 (1)χ

2χ  =  0.04, Prob (  > 0.04 ) = 0.8405. 2 (1)χ

Second, we tested the hypothesis that the service inputs (SH and SK) are econometrically 

endogenous.  Such endogeneity would result if the number of passengers on a route or a 

route’s on-time performance significantly influenced the level of service on that route.  If such 

endogeneity is present, it would be necessary to replace SH and SK with Instrumental Variables 

(IVs).  The conventional statistical test involves comparing the original OLS equations with IV 

equations in which the suspected variables are replaced with IVs, and accepting the hypothesis 

of endogeneity if the equations differ to a statistically significant degree.  Applying the Hausman 

Specification Test, the OLS and IV equations with Riders as the response variable did not differ 

to a statistically significant degree [ 2χ =  1.11, Prob (  >1.11) = 0.9811].  Again applying 

the Hausman Specification Test, the OLS and IV equations with On-time Performance as the 

response variable did not differ to a statistically significant degree [

2(6)χ

2χ = 1.25, Prob (  

>1.25) = 0.9961].  Therefore, the hypotheses that econometric endogeneity is present cannot be  

2 (8)χ
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accepted.  

 It may seem curious that the number of riders could not be shown to affect level of service.  

This may have occurred because the agency’s service standards support equity for all areas of 

the city, which results in a fairly high minimum level of service on all routes, regardless of 

ridership levels.  Although this agency increases service if ridership increases to the point that 

the buses are over-crowded, usually any increases in ridership can be absorbed by the current 

frequency and size of buses, without increasing service.  Likewise, the minimum level of service 

requirement generally means that decreases in ridership will not lower service levels. 

Let us return to estimation of the parameters of Equations 4 and 5.  We used OLS 

regression, with robust variance-covariance estimation in order to adjust for arbitrary 

heteroskedasticity and serial correlation.  For Equation 5, the proportion of runs on time (OTP) 

did not involve censored data (0.56 < OTP < 0.90), so it was unnecessary to use a censored-

data regression model (Breen 1996).  By using robust estimation procedures to deal with 

potential heteroskedasticity and serial correlation, the procedure yields more valid tests of 

statistical significance (Wooldridge 2002).   

The results of the regressions are presented in Tables 1 and 2.  The regression coefficients 

and statistical significance of seat hours and seat kilometers are immaterial.  The two variables 

are highly multicollinear, but, more importantly, they are merely serving as control variables.  At 

the 0.05 level, in Equation 5 only 6Pop Key T× × is statistically significant, and in Equation 6 

and the entire garage dummy variables are statistically significant.   PopDen
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Table 1.  Robust Regression of Riders on Endogenous and Exogenous Variables 

Riders Coefficient 

Robust 
Standard 

Error t-ratio P(t)>t 
SH 0.0214 0.0071 3.00 0.005
SK -0.0295 0.0199 -1.48 0.147
Pop -0.0071 0.0122 -0.58 0.783
Pop*Key 0.0241 0.0161 1.50 0.071
Pop*T6 0.0173 0.0116 1.49 0.073
Pop*Key*T6 0.0464 0.0205 2.26 0.030
Constant -331.1825 476.1243 -0.70 0.491
R2 = 0.8846; F(6, 39) =  48.58; P[F(6,39)>48.58] <  0.00005; 
Probabilities for Pop, Pop*Key, and Pop*T6 are one-tail. 

 

 

Table 2.  Robust Regression of On-time Performance On Endogenous and Exogenous 
Variables 
  

OnTimePerformance Coefficient 
Robust 

Standard 
Error 

t-ratio P(t)>t 

PopDen -0.0563 0.0271 -2.08 0.023 
SH 0.1837 0.1099 1.67 0.103 
SK -0.7164 0.3496 -2.05 0.048 
Garage 2 -0.1495 0.4251 -3.52 0.001 
Garage 3 -0.0862 0.3653 -2.36 0.024 
Garage 4 -0.0836 0.1945 -4.30 0.000 
Garage 5 -0.0424 0.1883 -2.25 0.030 
Garage 6 -0.1060 0.0286 -3.70 0.001 
 Constant 0.8884 0.0223 40.09 0.000 
Note:  SH and SK values in millions. 
R2 =  0.4863;  F(8, 37) = 17.51;  P[F(8,37)>17.51] < 0.00005 
Probability for PopDen is one-tail   
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Adjusting the Outputs   

We use the expected values of the regression coefficients of the environmental variables 

that were statistically significant at the 0.05 level, 6Pop Key T× ×  for ridership and PopDen for 

on-time performance, to remove the effects of these variables, as shown in Equations 6 and 7.  

Note that these adjusted values retain any inefficiency and random noise contained in each 

DMU’s residual error.  Only the expected marginal effects of the exogenous variables are 

removed.   

6.Adjusted 6j j jRiders Riders Pop Key Tβ= − × ×  
 (6)

3.Adjusted j jOTP OTP PopDenjβ= −  
 (7)

 

STAGE TWO: DATA ENVELOPMENT ANALYSIS 

The DEA procedure has been well-explained in most of the 30 transit DEA studies cited in 

our first paragraph, including the paper by Boilé (2001) in this journal, and in general texts (Färe 

et al. 1994; Cooper et al. 2004; Coelli et al. 2005).  Therefore, we do not repeat those 

explanations here. 

Our DEA scores are computed using Linear Program (8), which is output oriented and 

assumes constant returns to scale.  The DEAs were conducted with Scheel’s EMS software 

(2000).  

maxθ
λ

      

 subject to 
46

1
jm j km

j
y yλ θ

=
≥∑ 1,2,3,4,5m =    

46

1
jn j kn

j
x xλ

=
≤∑ 1,2n =      

0jλ ≥ 1,2,...,46j =     (8)
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11( ,..., )jnx xFor each of the j DMUs (j = 1,…,46), there are data on the n = 2 inputs x , and on the 

m = 5 outputs y .  The DEA score θ identifies the technical efficiency of the target 

DMU k.  The program was run twice for each DMU, once with unadjusted outputs and once with 

adjusted outputs, so the marginal effects of the environment on efficiency could be identified.   

11( ,..., )jmy y

THE RESULTS  

There are two things worth looking for in the following scores.  First are the differences 

between the unadjusted and adjusted scores.  If the difference is relatively large for a given 

route, then it would be wise to carefully study that route.  The second thing we need to look for 

is adjusted scores that are substantially higher than 1.  These routes should be thoroughly 

analyzed for correctable problems, including comparisons with their best-practice benchmarks. 

Best-practice routes are those found to be efficient, and those best-practice routes whose 

input and output proportions most closely mirror an inefficient route become its benchmarks.  

Those best-practice routes that are benchmarks for large numbers of inefficient routes are 

especially worthy of study, because they are the efficient routes that have most in common with 

many other routes.  

In some cases management may find that there are uncorrectable factors that result in low 

efficiency, or that there are other justifiable reasons for the high adjusted scores.  In other 

cases, the high adjusted scores may identify routes that can and should be improved.  Methods 

for improvement may be discovered by looking at the practices of an inefficient route’s best-

practice benchmarks. 

The unadjusted and adjusted DEA efficiency scores are shown in Table 3.  Of the 46 routes, 

20 became more efficient, 12 did not change, and 14 became less efficient.  
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Table 3.  Data Envelopment Analysis Results, by Decision Making Unit 

ID Unadj.  
Score 

Adj.  
Score Change Change  Benchmarks 

1 1.22 1.20 better -0.02 10, 23, 33, 44 
2 1.70 1.72 worse 0.02 15, 23, 28 
3 1.20 1.30 worse 0.10 10, 23, 28 
4 1.00 1.06 worse 0.06 23 
5 2.40 2.88 worse 0.49 23, 28, 29 
6 1.07 1.06 better -0.01 23, 29, 33, 44 
7 1.38 1.76 worse 0.37 10, 23, 25 
8 1.10 1.24 worse 0.14 23, 29 
9 2.19 2.06 better -0.13 23, 28 
10 1.00 1.00 same 0.00 Benchmark for 14  
11 1.37 1.25 better -0.12 10, 23 
12 1.95 1.88 better -0.07 15, 23, 28 
13 1.58 1.54 better -0.04 15, 23, 25, 33 
14 1.14 1.39 worse 0.25 23 
15 1.00 1.00 same 0.00 Benchmark for 13  
16 1.35 1.25 better -0.11 10, 23, 29, 33, 44 
17 1.87 1.87 worse 0.00 15, 23, 28, 29, 33 
18 1.27 1.21 better -0.06 10, 23, 25 
19 1.36 1.64 worse 0.28 10, 23, 25, 29 
20 1.75 2.07 worse 0.32 23, 28 
21 1.17 1.18 worse 0.01 15, 23, 29 
22 1.06 1.16 worse 0.10 10, 23, 28 
23 1.00 1.00 same 0.00 Benchmark for 29  
24 1.09 1.31 worse 0.22 10, 23, 25, 29 
25 1.00 1.00 same 0.00 Benchmark for 16  
26 1.63 1.65 worse 0.01 15, 25, 28, 32 
27 1.00 1.00 same 0.00 Benchmark for 1  
28 1.00 1.00 same 0.00 Benchmark for 16  
29 1.00 1.00 same 0.00 Benchmark for 13  
30 1.18 1.18 same 0.00 15, 25, 29, 32 
31 1.24 1.24 same 0.00 23, 25, 28, 29 
32 1.00 1.00 same 0.00 Benchmark for 5  
33 1.00 1.00 same 0.00 Benchmark for 7  
34 1.02 1.01 better -0.01 15, 23, 25, 28 
35 2.01 1.98 better -0.03 10, 25, 28 
36 2.01 1.98 better -0.03 15, 23, 28 
37 1.15 1.10 better -0.05 15, 25, 32, 33 
38 2.37 2.36 better -0.01 15, 23, 25, 28 
39 2.06 2.04 better -0.03 10, 23, 25, 29 
40 1.99 1.96 better -0.03 10, 23, 25, 29 
41 2.01 1.94 better -0.07 23, 28 
42 1.68 1.53 better -0.15 10, 25, 28 
43 2.39 2.27 better -0.12 10, 23, 25, 29 
44 1.00 1.00 same 0.00 Benchmark for 3 
45 1.65 1.64 better -0.01 15, 27, 32 
46 2.27 2.23 better -0.04 15, 32, 33 

Decision Making Units listed in ID order.  Higher scores are worse.  Benchmark Decision Making Units are those 
for adjusted scores. 
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Identification of route efficiencies, with both original and adjusted scores, is the first step.  

Next the “red flag” test should be used to identify routes that should receive further attention.  

Suppose management decides to analyze both (1) routes whose reported efficiency changed by 

at least |0.30| when adjusted for environment, and (2) routes whose adjusted scores were 

greater than 2.  These criteria would flag 8 of the 46 routes, namely DMUs 5, 7, 9, 20, 38, 39, 

43, and 46.   

Management needs to look at these eight routes more closely. For example, consider DMU 

5, which has been flagged above for low efficiency. The benchmark routes for DMU 5 are 23, 

28, and 29 (Table 4). Comparison of the inputs, outputs and environmental variables of these 

four DMU's shows that DMU 5 has outputs comparable to DMU 23 but DMU 5 needs almost 2.5 

times the inputs as DMU 23. Further comparison reveals that DMU 5 is an express service and 

serves longer distances as compared to DMU 23.  DMUs 28 and 29 are both express routes 

and still are efficient. This indicates that it might be possible to improve the efficiency of DMU 

5 by reducing its service hours like DMU 28 and 29 or making it a regular service like DMU 23.  

However these suggestions may or may not be practical, if non-efficiency considerations also 

are involved.    

Table 4. Decision Making Unit 5 and Its Benchmark Systems, by Outputs and Inputs 

ID Service 
Span 

Mean 
Freq 

Max 
Freq Riders OTP SK SH 

5 1233 6.11 10.00 11298 0.74 311635 1110833 
23 1271 5.71 7.50 10949 0.59 118245 446880 
28 291 10.61 15.00 2038 0.57 31788 111510 
29 808 4.00 4.00 1106 0.78 20291 145236 
 

Figure 1 is a representation of the benchmark units for each of the 8 DMUs of concern 

identified in Table 3.  DMU 23 serves as a benchmark for all but one of the DMUs of concern.  

And, DMUs 25 and 29 each serve as benchmarks for half of the DMUs of concern, and together 
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are benchmarks for all but one of these DMUs.  This suggests that these common benchmarks 

warrant closer attention to learn why they are efficient and whether their experiences are 

transferable to inefficient units.  

 Figure 1.  Selected Inefficient Decision Making Units, by Benchmark Decision Making Units 
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                      Source:  Table 3. 

CONCLUSIONS   

Using DEA to evaluate the efficiency of the subunits of an urban transit system is a 

promising procedure for improving urban transit performance.  This paper demonstrates an 

improved method for adjusting DEA scores for the environment, and illustrates DEA 

performance analyses when organizational subunits instead of entire organizations are the 

focus of study.  
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