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A QUALITY CONTROL FRAMEWORK FOR BUS 
SCHEDULE RELIABILITY   
 
 
Abstract 
 
This paper develops and demonstrates a quality control framework for bus schedule 
reliability.  Automatic Vehicle Location (AVL) devices provide necessary data; Data 
Envelopment Analysis (DEA) yields a valid summary measure from partial reliability 
indicators; and Panel Data Analysis provides statistical confidence boundaries for each 
route-direction’s DEA scores.  If a route-direction’s most recent DEA score is below its 
lower boundary, it is identified as in need of immediate attention.  The framework is 
applied to 29 weeks of AVL data from 24 Chicago Transit Authority bus routes (and 
therefore 48 route-directions), thereby demonstrating that it can provide quick and 
accurate quality control. 
 
Key words: schedule adherence, data envelopment analysis (DEA), Panel Data 
Analysis (PDA), confidence interval, automatic vehicle location (AVL) 
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1 Introduction 

The importance of reliable bus service to customers is well known, with “arriving when 

planned” being the most important desire of transit riders (Nakanishi, 1997; Transportation 

Research Board, 2002).  Not surprisingly, consistency of service is one of the key sets of bus 

performance indicators that are monitored by most transit systems (Benn, 1995).  Public transit 

agencies have developed multiple indicators to measure consistency of service, with indicators 

of on-time performance and headway adherence being almost universal, and a third common 

measure being running time adherence (Nakanishi, 1997; Benn, 1995; Vuchic, 2004; 

Transportation Research Board, 2003)  

Unfortunately, the value of these service reliability indicators has been diminished by 

three problems.  The first problem has been their infrequent collection.  In order to make the 

best use of these indicators, it is necessary to frequently collect samples from each bus route, 

and to quickly make them available for analysis.  In the past, for this activity to occur would have 

resulted in unacceptably high expenses because the data had to be collected and recorded 

manually (Nakanishi, 1997). 

The second problem has been the absence of a single, over-all performance indicator 

that validly aggregates partial measures such as those identified above.  One comprehensive 

service reliability indicator would make it much easier to quickly and validly identify those routes 

most in need of intervention.  With multiple indicators, it may be difficult to determine which 

routes have the overall worst performance because routes doing well on some measures may 

be doing poorly on others.  This problem is exacerbated when quick decisions should be made. 

The third problem is determining whether a route’s declining service is caused by 

systematic new problems, or simply due to random chance.  If management is to address 

problems of routes that are truly in difficulty, it should avoid wasting time on routes whose  
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reported declines are simply random variations.   

The purpose of this paper is to present a framework for mitigating these three problems, 

thereby enabling management to more quickly and accurately identify those routes most in need 

of assistance.  The framework involves use of (1) Automatic Vehicle Location (AVL) data to 

obtain frequent and quickly-available samples, (2) Data Envelopment Analysis (DEA) to 

aggregate the various service reliability measures into one comprehensive indicator, and (3) 

Panel Data Analysis (PDA) to develop quality control charts for the performance of each 

individual route, which will alert management to routes performing worse than normal random 

variation explains.  

The paper unfolds as follows.  In the rest of this introductory section, background 

information on AVL, DEA and PDA is presented.  Then, application of the framework is 

illustrated through a case study using archived AVL data provided by the Chicago Transit 

Authority (CTA).  The CTA’s bus route schedule adherence performance measures are defined 

in Section 2.  The assessment framework is presented in Section 3.  The case study results are 

reported in Section 4, including discussion on the DEA scores and their confidence intervals as 

quality controls for bus schedule adherence performance.  Finally, the study contributions, 

limitations of the study and future research needs are summarized in Section 5. 

1.1 Availability of Automatic Vehicle Location Data 

With automatic vehicle location (AVL) devices becoming available on many buses in 

recent years, the quantity and quality of data have greatly improved and can be made quickly 

available to transit agencies.  According to the U.S. Department of Transportation, two thirds of 

the 19 largest American transit agencies had their fleet fully equipped with AVL technology by 

2004; the Chicago Transit Authority (CTA) is among those 100% AVL equipped agencies (U.S. 
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Department of Transportation, 2007).  Therefore, AVL has become widespread and will likely be 

available at even more transit agencies in the future. 

1.2 Data Envelopment Analysis 

DEA is widely used in economic analysis for identifying technically efficient operations 

(Cooper et al., 2004; Färe et al., 1994; Färe and Grosskopf, 2004; Gattoufi et al., 2004).  It is a 

linear programming method that combines partial efficiency measures into a single 

comprehensive indicator that provides objective evaluation and consistent comparisons of 

technical efficiency among decision making units (DMUs), i.e., base analysis units in DEA.   

Use of DEA to compare the efficiencies of urban transit systems has become 

increasingly popular in recent years, particularly since 2000.  De Borger et al. (2002) and Brons 

et al (2005) have given comprehensive reviews of transit DEA studies.  Among the articles 

published since 2000, some analyze the efficiency of public transit in terms of services delivered 

(Graham, in press; Karlaftis, 2003&2004; Pina and Torres, 2001; Novaes, 2001); some measure 

the efficiency in terms of productivity (Odeck and Alkadi, 2001; Odeck, 2006); others compare 

technical and social efficiency of transit agencies (Boilé, 2001; Boame, 2004; Nolan et al., 

2001&2002).  One recent study uses Panel Data Analysis to make statistical inferences about 

estimated technical efficiencies of Canadian paratransit systems (Barnum et al., 2007a).  Most 

recently, DEA has been applied to compare subunits within a single transit agency.  Sheth et al. 

(2007) evaluated the overall performance of an agency’s bus routes by using DEA and goal 

programming with artificial data.  In one study, Barnum and his colleagues (2007b) combine 

DEA and Stochastic Frontier Analysis to compare the CTA’s park-and-ride lot efficiency, and 

combine DEA and a reverse two-stage procedure (Barnum and Gleason, 2007) to analyze the 

technical efficiency of bus routes in another (Barnum et al., 2007c). 
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In this study, DEA scores are based solely on outputs (i.e., schedule adherence 

performance), which is different from all past transit DEA studies.  In all of the other transit 

studies, DEA scores are based on output/input ratios known as technical efficiency indicators 

(Charnes et al., 1978; Cooper et al., 2004; Färe et al., 1994).  The DEA scores in this study are 

effectiveness indicators, because they measure goal achievement (Gleason and Barnum, 

1982).  DEA has been so used in non-transit cases, such as in determining best location in 

location analysis (Thompson et al., 1986) and in evaluating human performance (Anderson and 

Sharp, 1997).  In these two cases, as in this study, the DEA score is a measure of comparative 

output performance of each DMU, not a measure of each DMU’s efficiency.  Specifically, DEA is 

used in this study to compare the schedule adherence performance of individual routes. 

1.3 Panel Data Analysis 

Even with quickly available AVL data from which performance indicators can be 

aggregated into a single valid measure by DEA, a third problem remains to be solved.  Because 

of random noise in the data (Grosskopf, 1996), a given route’s sample DEA scores would be 

expected to vary; if a route’s score goes down, or even if the trend in its scores is downward, 

this doesn’t necessarily mean  that the route’s true performance has declined or is declining.  In 

order to determine whether a decrease in a route’s mean performance has occurred, it is 

necessary to develop statistical tests to determine if the scores have declined from their 

expected value to a statistically significant degree, or if the observed variations are just due to 

random chance.  Recently, a new method has been developed using Panel Data Analysis on 

DEA scores to construct confidence intervals (Barnum et al., 2007a).  This technique has not 

been applied to transportation subunits, but, because AVL makes panel data for individual bus 

routes available, it can be applied in this study. 
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2 CTA Bus Service Reliability Indicators 

As the second largest transit agency in the nation, the CTA serves Chicago and forty 

surrounding suburbs with over 150 routes, more than 2,000 buses, and 2,273 route miles.  CTA 

buses provide one million passenger trips a day and serve more than 12,000 posted bus stops.   

The CTA has historically used running time adherence and headway regularity as key 

service reliability indicators (Hammerle et al, 2005).  Not by coincidence, New York City Transit 

has applied the similar metrics (Nakanishi, 1997).  Time-point level running time adherence and 

headway regularity are adopted in this study.  They are calculated from the CTA’s archived AVL 

data.  In bus scheduling, time points are important physical points on a bus line that indicate 

when the bus is expected to arrive at those locations.  In other words, buses are “timed” at time 

points rather than at stops, for example in CTA bus scheduling.  Although stop level analysis 

could provide greater details of bus service, time point data satisfy the transit agency’s practical 

needs and the purpose of this study for schedule adherence assessment, with much less data, 

storage requirements, and computational power.   

2.1 Running time adherence 

Running time adherence (measured in %) is defined as the average difference between 

the actual and the scheduled running times relative to the scheduled running time.  When the 

actual running time is shorter than the schedule, the measure is called Δ% Shorter Running 

Time and otherwise Δ% Longer Running Time:  

%
m

Time Run Scheduled
Time Run ScheduledTime Run Actual

TimeRunningShorter m 100% ×
∑

−

=Δ  

 

(1) 

%
k

Time Run Scheduled
Time Run ScheduledTime Run Actual

TimeRunningLonger k 100% ×
∑

−

=Δ  

 

(2) 

 
5



     
 

UIC Great Cities Institute 

Where m is the number of shorter running time events and k is the number of longer running 

time events between two consecutive time points in the same route-direction.  The higher the 

running time metrics the worse the running time adherence.  

2.2 Headway regularity 

Similarly, headway regularity (measured in %) is defined as the average difference 

between the actual and the scheduled headways relative to the scheduled headway.  If two 

consecutive buses are further from (or closer to) each other than the scheduled headway, the 

difference is called a longer (or shorter) headway difference.  Bus bunching is an extreme 

example of short headway.  The definition equations for headway regularity metrics are shown 

in Equations (3) and (4):  

%100

)(

% ×
∑

−

=Δ
n

headway Scheduled
headway Scheduledheadway Actual

HeadwayLonger
n i

ii

 
(3) 

%100

)(

% ×

∑
−

=Δ
l

headway Scheduled
headway Scheduledheadway Actual

HeadwayShorter
l j

jj

 

 

(4) 

 

Where n and l are the numbers of longer and shorter headway difference, respectively, at time 

points in the same route-direction.  A high headway metric value indicates poor headway 

regularity adherence.  

It is worth noting two bus operations/data phenomena that require particular attention in 

calculating headways with AVL data: bus overtaking and missing observations.  Bus overtaking 

refers to the phenomenon in which the successor bus passes its predecessor along the route.  

From the view point of those waiting for a bus at stops, this makes no difference in measuring 

the headway, because the headway to them is always the time elapse between the last bus 
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having arrived and the next bus to show up, whether the next bus is the scheduled bus or not.  

Therefore, in this paper, headway is calculated between the two sequential (in time) 

observations at a time point in the same route-direction.  

Missing AVL data is not uncommon, occurring when the AVL device is broken or when 

tall buildings or other blockages (e.g., tunnels) exist to impair the ability of on-board GPS 

devices to determine location.  In such cases the calculated headways are not the actual 

headways occurring in the field.  On the other hand, the headway metrics defined in Equations 

(3) and (4) are relative measures between the actual and the scheduled headways.  The 

absolute values of the observed headways are of little relevance if both the observed and the 

corresponding scheduled records are present in the dataset.  For example, if bus trip No.2 is 

missing then both the actual and the scheduled headways become those between trips No.1 

and No.3 and thus the headway difference is the sum of two pairs’, No.1 and No.2, and No.2 

and No.3.  This calculation is consistent with the definitions in Equations (3) and (4). 

3 Bus Schedule Adherence Assessment Framework 

The quality control framework for bus schedule reliability consists of the following three 

steps.  First, the DMU is determined to be bus route-direction in consideration of traffic 

directionality – the terms “route-direction” and “DMU” are interchangeable in the rest of the 

paper.  The running time and headway metrics defined earlier are calculated for each bus route-

direction.  Second, DEA scores combining all four metrics are computed for each route-

direction.  These route-directions are then ranked by the DEA scores.  Third, confidence 

intervals for the DEA scores and trends are computed for each route-direction, using PDA 

methodology (Kumbhakar and Lovell, 2000; Wooldridge, 2002; Hsiao, 2003; Frees, 2004; 

Baltagi, 2005; Baum, 2006).  These confidence intervals serve as quality control limits for each 

route-direction’s on-time performance.  As demonstrated later in the paper, the findings of 
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confidence interval analysis are important in interpretation of the DEA scores and have practical 

implications for control of bus on-time performance.   

This framework is illustrated through a case study of twenty-four CTA key routes.  These 

routes represent half of the CTA key routes (as opposed to support and special routes) and are 

spatially evenly distributed across the Chicago downtown and nearby suburbs.  Ten of them are 

in the east-west direction, and the other fourteen are in the north-south direction.  The 24 study 

routes are further divided into 48 route-directions (DMUs), labeled with letters.  The eastbound 

and northbound route-directions are labeled with uppercase letters and their opposite 

westbound and southbound route-directions are labeled with the same but lowercase letter.  For 

example, letters B and b represent the two opposite directions of the same bus route.  The 

study time period covers weekday morning peak hours (6:30:00 AM to 8:59:59 AM) between 

January and June 2006, a total of twenty-nine weeks of AVL data.  That is, a total of 48 x 29 = 

1,392 route-directions for analysis.   

3.1 Derivation of DEA-based Performance Measure 

DEA uses linear programming techniques to weight and aggregate outputs divided by 

inputs in a way that results in a single comprehensive efficiency measure, with efficient units 

scoring exactly 100 (in percent) or beyond in the case of super-efficiency (Andersen and 

Petersen, 1993).  The efficiency level of each non-efficient unit is expressed as a percentage of 

the efficiency of its efficient peers and is thus less than 100%.   

In this study, the DEA model in Equation (5) is applied to measuring bus route-directions’ 

schedule adherence performance, not their efficiencies.  Note that although the four schedule 

adherence indicators are in truth outputs, they are treated as inputs in the DEA model.  This is 

because DEA assumes increasing outputs are desirable and increasing inputs are undesirable.  

Because increases in those four indicators are undesirable, they are treated as inputs rather 
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than outputs, a conventional method for dealing with undesirable outputs (Coelli et al., 2005).  

There are other ways to enter undesirable outputs into a DEA model (Scheel, 2001; Coelli et al., 

2007), but discussion of them is beyond the scope of this paper. 

 
 ,

min
θ

θ
λ  

  

Subject to: km

N

j
jjm xx θλ ≤∑

=1
 1,2,3,4m =  

 

 ∑
=

≥
N

j
kjj yy

1
λ  1, ,j ky y j k= = ∀  

(5) 

 0kλ =    

 0jλ ≥
 kjjj ≠=∀ ,,...,,, 139221   

 
 

For each of the j route-directions (j = 1,…, 1392), there are four inputs, xjm’s (m = 1,…,4), 

corresponding to the four schedule adherence indicators, i.e., Δ% Shorter Running Time, Δ% 

Longer Running Time, Δ% Shorter Headway, and Δ% Longer Headway; there is one output 

variable, yj (j = 1,…, 1392), equal and set to unity for all route-directions.   

Equation (5) is applied to each target route-direction k (k=1,…, 1392).  Each time optimal 

weights λj’s (j≠k) are assigned to route-directions such that the target route-direction k receives 

the highest super-efficiency score θ (in %) it can possibly receive when compared to the other 

route-directions.  The constraint 0kλ =  prohibits the target route-direction k to be included as its 

own peer. Thus, if route-direction k is among the best performing ones, also known as the 

benchmark DMUs, its score is not limited to 100% as in the classical DEA efficiency scores but 

will reflect how much better performance it has than its benchmark peers.  For example, if a 

route-direction has a score of 150%, then its score is 50% more than is needed to equal the 

other benchmark route-directions’ performance.  If a route-direction’s score is less than 100%, it 

is still out-performed by benchmark route-directions even under its best possible performance.   
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Note that model (5) computes a common frontier for data from all weeks.  This is called an 

intertemporal frontier.  In fact, there are three different kinds of frontiers: intertemporal – 

observations are compared all at once across time periods, contemporaneous – observations 

are compared only with others in the same period, and sequential – observations are compared 

only with others in the same or earlier periods (Tulkens and Vanden Eeckaut, 1995).   

3.2 Derivation of Panel DEA-based Confidence Intervals as Quality Control 

Deriving DEA scores for bus schedule adherence performance is only the first step 

toward improving bus service reliability.  In this study, it is of particular interest to establish 

confidence intervals as quality control limits so to quickly inform management when a given 

route’s schedule adherence performance has worsened more than could be expected by 

random chance.  By identifying only the routes with true problems, management can be more 

productive in use of their time by practicing “management by exception.”   

The confidence interval analysis is intended for quality control of bus schedule 

adherence performance.  A route-direction requires immediate attention if it has at least one of 

the following three problems: (1) it is among those with the lowest performance scores; (2) its 

score for the most recent week is worse than the lower limit of its confidence interval; or (3) its 

performance scores show a statistically significant downward trend. 

Although there will be situations in which the aforementioned problems cannot be 

corrected because of factors beyond transit agencies’ control, the agencies will often be able to 

make changes that will improve the performance of problematic routes.  Over time, the second 

two problems should become less common, although internal and external changes will always 

create new problems.  There will always be routes “with the lowest performance scores.”  

However, corrective actions over time should decrease the “depth” of the problem.  It may be 

worth noting that improving the performance of the worst performers will not likely affect the 
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future scores of other routes.  All routes’ performances are benchmarked to the best-performing 

routes, and it is highly unlikely that corrective actions will transform the worst performers into the 

best performers.  Even if this were to happen, however, it is all to the good because it would 

increase the standards that all have to meet, which is a desirable situation.   

PDA procedures (Kumbhakar and Lovell, 2000; Wooldridge, 2002; Hsiao, 2003; Frees, 

2004; Baltagi, 2005) are used to derive confidence intervals of the DEA scores.  The panel 

structure of the DEA scores, { }29214821 ,...,,;,...,, === tjP jtθ , makes it possible to use PDA, 

and therefore to estimate confidence intervals (Barnum et al., 2007a).  A PDA approach 

represents a distinction from the pooled and cross-sectional methods that have been used in all 

published transit DEA studies.  It also represents a desirable extension of the traditional DEA, 

which is a method of deterministic frontier analysis assuming that there is no statistical noise in 

the data and that scores measure efficiency without error.   

A super-efficiency score jtθ  (for t=1,…, 29, and route-direction j=1,…, 48) includes a 

true “efficiency” value and a random error.  Furthermore, for some of the routes, there may be a 

time trend in their performance1.  Thus, the regression equation to be estimated can be written 

in the following form: 

jttjjjt uz ++= βαθ  j = 1,…, 48; t = 1,…,29 (6) 

 

where jtθ = the super-efficiency score for route-direction j and time t 

jα = schedule adherence performance score at t=1 associated with route-direction j, 

                                                 
1 It would be worthwhile to identify influences such as environmental factors that cause the routes to have different 
on-time performance levels.  However, the purpose of this paper is to present a methodology by which transit 
managers can use AVL data, DEA scores and PDA to construct control charts, so they can quickly react to routes 
that truly are in need of attention.  It is not our attempt to empirically identify the reasons that the routes have 
different on-time performance levels, but valuable insight into the causes of performance differences among routes 
could be gained by such studies in the future. 
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jβ = coefficient of time trend for route-direction j, estimating the average weekly change 

in schedule adherence performance for that route-direction 

tz = week in sequence with values ranging from 0 to 28.  The first week score is chosen 

as the base, i.e., 1z =0  

jtu = random error term for route-direction j in week t. 

Super-efficiency scores are an observable proxy for latent variable values underlying 

conventional efficiency scores.  Using super-efficiency scores avoids a limited-value response 

variable in the regression, as discussed by Coelli et al (2005).  Thus, when using super-

efficiency scores, it is not appropriate to use sample-selected, truncated or censored regression 

models, such as Tobit regression (Breen, 1996).  Such methodologies would have been 

necessary if conventional technical efficiency scores, which yield a limited-value variable, had 

been used.   

Equation (6) includes a variable, tz , adjusting each route-direction’s weekly 

performance.  That is, the fitted value of the score of route-direction j is jα  in week 1, j jα β+  

in week 2, and so on up to 28j jα β+ in week 29.  This permits a different trend in the 

performance scores of each DMU, whether positive, negative or zero.  If there is no change in 

on-time performance scores over time for route-direction j, or if the temporal trend is 

inconsistent, then jβ will not be statistically significant and jα will be an unbiased estimate of 

the mean performance score of route-direction j for the entire 29-week period.  If in truth the 

route-directions differ in their mean performance scores and/or the temporal trends, and if 

random errors are small compared to the true performance scores, Equation (6) should result in  

a statistically significant R-square.    

12



  

UIC Great Cities Institute   

For quality control purposes, scores above the upper confidence level indicate that 

performance has been better than expected and therefore do not require immediate corrective 

actions; scores falling below the lower confidence limit are those of concern.  Therefore, only 

the lower limit of the confidence interval is estimated herein.  The lower limit is 

( ) ( )jtnjt scE θθ − , where ( )jtE θ  is the expected value of jtθ ; nc  is the t-statistic at 0.10 level 

for a sample with n degrees of freedom; and ( )jts θ  is the standard error of jtθ , 

( ) ( )( )1'1jt jt jts MSEθ
−

= + 'x X X x , where MSE is the sample’s mean squared error; jtx  is the 

vector of regressor values used to predict the response variable jtθ , and X  is the matrix of  

independent variable values from the sample. 

4 Case Study Results 

4.1 Schedule Adherence Performance 

Table 1 shows the descriptive statistics of the running time and headway metrics for the 

48 route-directions over the 29 weeks of study period.  On average, 41.34% of the actual 

running times are longer than (and thus behind) the scheduled, more than double of those 

shorter than (and thus ahead of) the scheduled (17.36%).  For the headways, 43.46% are 

longer and 34.19% are shorter than the scheduled headways.  The standard deviations of the 

longer running times and headways are also consistently larger than those of the shorter ones.  

These findings are expected, as buses running behind schedule are often the result of 

uncontrollable factors such as traffic congestion, whereas bus drivers have better control when 

running ahead of schedule.   
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Table 1. Descriptive statistics of running time and headway regularity metrics 
Performance indicator Minimum Maximum Mean Std. Dev. 
Δ% Longer Running Time 13.58 158.46 41.34 20.40 
Δ% Shorter Running Time 6.36 31.04 17.36 4.48 
Δ% Longer Headway 3.88 145.10 43.46 21.63 
Δ% Shorter Headway  6.12 61.64 34.19 11.50 

 

4.2 DEA-based Schedule Adherence Scores 

The 29-week performance scores of the 48 route-directions show large variation across 

the route-directions and small variation within individual route-directions (Table 2).  The analysis 

of variance (ANOVA) confirms the statistically, significantly different schedule adherence 

performances across route-directions (F-stat =186.567, P(F47 >186.567)<0.000). 

Table 2.  Descriptive statistics of DEA scores 
Route-

direction Mean Variance 
Route-

direction Mean Variance 
a 0.48 0.001 A 0.46 0.003 
b 0.54 0.001 B 0.59 0.001 
c 0.86 0.013 C 0.34 0.000 
d 0.69 0.004 D 0.65 0.004 
e 0.51 0.002 E 0.40 0.001 
f 0.33 0.001 F 0.57 0.001 
g 0.53 0.003 G 0.48 0.001 
h 0.47 0.001 H 0.39 0.001 
i 0.53 0.002 I 0.55 0.002 
j 0.60 0.001 J 0.69 0.002 
k 0.78 0.007 K 0.54 0.002 
l 0.41 0.001 L 0.36 0.001 

m 0.53 0.002 M 0.64 0.006 
n 0.66 0.001 N 0.58 0.001 
o 0.69 0.005 O 0.81 0.008 
p 0.47 0.001 P 0.42 0.001 
q 0.51 0.001 Q 0.71 0.004 
r 0.64 0.001 R 0.53 0.002 
s 0.45 0.001 S 0.65 0.007 
t 0.54 0.001 T 0.52 0.001 
u 0.59 0.001 U 0.33 0.000 
v 0.73 0.004 V 0.69 0.005 
w 0.46 0.000 W 0.34 0.000 
x 0.56 0.011 X 0.78 0.014 

Minimum =  0.33         Maximum = 0.86 
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There are eight benchmark route-directions identified out of the 1,392 route-directions 

(Table 3).  They are the ones with the DEA scores 100% or higher.  These eight benchmarks 

come from four route-directions and three routes, c, X, and O-o, which had consistently good 

schedule adherence performance over the 29 weeks.   

Table 3.  Benchmark route-directions as a result of DEA 
Route-Direction Week Score Times of Being a Benchmark

c 1 104.13% 515 
O 5 109.86% 186 
c 8 101.09% 17 
c 15 102.02% 24 
X 27 120.64% 1354 
O 30 194.39% 57 
X 30 126.05% 672 
o 30 117.08% 84 

 

Most pairs’ performance score distributions have quite different profiles.  In particular, 

the inbound directions to downtown Chicago tend to have poorer schedule adherence in the 

morning rush hour.  This directionality of traffic conditions justified the reason for separating 

route-directions for analysis.   

It clearly is much easier to identify poor performance and trends when a valid summary 

measure such as a DEA score is used.  However, the descriptive statistics of the DEA scores 

cannot identify either sudden decreases in performance below what could be expected by 

random chance, or downtrends in performance that are not just the result of random variation, 

both of which are of even more interest in practice.  With Panel DEA scores computed from the 

archived AVL data, these issues can be addressed by combining the DEA scores with 

measures of statistical significance and confidence intervals for the DEA scores. 

4.3 Estimates of PDA Parameters 

The parameters of PDA (Equation 6) were estimated by using a fixed effects model and 

the Least-Squares Dummy Variables (LSDV) procedure (Baltagi, 2005).  A fixed effects model 
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was used rather than a random effects model or a mixed model because the intention was to 

estimate confidence intervals for the 48 route-directions (Baltagi, 2005).  When the model 

includes both the 48 intercepts and the 48 weekly trend variables, 97 percent of the variance in 

DEA scores is explained by differences between the route-directions ( 2R = 0.9715, F = 464.65, 

P(F(95, 1296)>464.65) <0.00005)2.  The intercepts ( jα ’s) and the slopes ( jβ ’s) range between 

0.020 and 0.296, and -0.0049 and 0.0068, respectively3.  If the weekly trend variables are not 

included, R-square decreases from 0.97 to 0.85, with the difference between the full and 

reduced models being statistically significant ( 00005.0)85.260(,85.260 2
48

2 <>= χχ P ).   

The high R-square for the full model is not surprising, given the large differences 

between the route-directions’ mean scores, and the small differences among the 29 scores of 

each route-direction, as discussed earlier (Table 2).  Note that each of the 48 route-directions is 

an independent variable in Equation (6), and the trend in each of the 48 route-directions’ 

schedule adherence performance is also an independent variable.  So there are a total of 96 

independent variables, two for each route-direction.  The parameters of each of the 48 route-

direction’s pair of independent variables are estimated with 29 of the 1,392 (29 x 48) total 

observations.  If the route-directions had not differed from each other systematically in their 

performance levels, then the R-square would have been very low; in this situation, they could be 

analyzed altogether with a single control chart.  Likewise, if the route-directions’ trends had not 

                                                 
2 The error term in Equation (6) was corrected for heteroscedasticity using the same method applied in Barnum et 
al. (2007a).  The error term was also found to have weak contemporaneous and serial correlation.  The conservative 
decision adopted in our analysis was to assume the errors were independent.  This was conservative because models 
accounting for error correlation are less robust and estimate narrower variances than i.i.d. variances.  The error term 
distribution was slightly leptokurtic, although very close to normal in the tails; this should not affect our analysis 
results because it was the distribution tails that were of concern. 
3 The individual regression coefficients are not presented herein because they are of little interest other than to 
predict the confidence intervals described later.  Another practical reason is the space limitation. 
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differed from each other systematically, then the R-square would not have improved when the 

full model replaced the reduced model. 

4.4 Confidence Intervals for Schedule Adherence Performance 

The confidence intervals of the performance scores for each route-direction and the 

statistical significance of trends were estimated based on the fixed-effect model of Equation (6).  

Table 4 identifies those routes most in need of action as of the final week of study: (i) those 

whose estimated performance scores for week 29 are in the thirty percent range, (ii) those 

whose actual performance scores for week 29 are below their expected value to a statistically 

significant degree (in the 0.10 tail), and (iii) those with a statistically significant (at the 0.05 level) 

downward trend performance over the 29-week period.  

Table 4.  Routes in need of management attention in week 29 

DMU 

Lowest  
Expected 
Scores* 

Outside Lower CI*** 
(% below expected 

score) 

Downward 
Trends** (Amount 

per Week) 
Number of 
Problems 

H  37.26% -8.98% -0.14% 3 
f 36.22% -7.65%  2 
U 31.99%  -0.09% 2 
A 39.72%  -0.46% 2 
k  -10.63%  1 
D  -9.24%  1 
J  -8.10%  1 
W 34.57%   1 
C 34.66%   1 
L 35.90%   1 
c   -0.49% 1 
i   -0.38% 1 
g   -0.30% 1 
r   -0.14% 1 
a     -0.11% 1 

Notes:  *All DMUs in 29th week with expected score values in the 30% range.   
           **All DMUs with downward trends statistically significant at the 0.05 level.   
          ***All DMUs whose actual scores in the 29th week were below the 0.90 confidence limits. 
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As can be seen, Route-direction H is the one most in need of attention.  Its expected 

DEA score is among the lowest decile of scores; its scores have shown a statistically significant 

downward trend over the 29-week period; and, perhaps worst of all, its most recent score is 

below its expected score to a statistically significant degree, which may indicate an even 

steeper downtrend in the future.  Three route-directions (f, U and A) are the next group of route-

directions that demand attention, each having two problems, and the remaining poorly-

performing routes each report one problem. 

In some cases, poor performance may be the result of factors external to the transit 

agency, but in others corrections can and should be made.  For example, among the 

problematic bus route-directions, f is a southbound service on a major arterial connecting 

several major intersections and CTA transfer points.  The route also serves a medical district, 

where patient activities and traffic calming in the area are likely to slow down the bus service.  

Route-direction W is a bus route on the City’s south side.  There are seven high schools, two 

Metra4 train stations and one CTA train station on this line, which may have contributed to its 

low scores.  Route-direction H has a similar story to W, but clearly has more performance 

issues.  

The route-direction pair C and c have contrasting performance, where c generally 

performs well (see Table 2).  The bus line runs north-south (C-c) between the city’s far south 

side and downtown.  In the morning, the northbound (inbound) buses encounter much higher 

passenger activities and traffic going into the city.  On the other hand, our confidence interval 

analysis indicates that the southbound (c) is not problem-free either – although it has high 

performance as of week 29, its long-term performance is trending down. 

                                                 
4 The 495-mile Metra system serves 230 stations between suburban Chicago and the City of Chicago 
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As a comparison, if the four performance indicators were used directly to assess the 

routes’ schedule adherence, Table 5 lists the top five worst route-directions for each of the four 

performance indicators.  The ranking is based on the mean DEA scores over the 29 week 

period.  Three points are observed.  First, it is not obvious as to which route-direction has the 

worst performance overall.  A route-direction may perform reasonably well by one measure but 

poorly by the others.  Second, eight out of the fifteen problematic route-directions identified by 

confidence interval analysis (in Table 4) are not detected using only the historical averages of 

the individual performance indictors (see Table 5).  In particular, Route-direction H, identified as 

the most in need of attention in confidence interval analysis, is not in the top five in any of the 

four lists in Table 5.  Lastly, downward trends are not directly obvious when the individual 

indicators are used.  For example, route-direction c performs generally well and thus is not seen 

on any of the four lists, but has been identified with a significant downward trend by PDA.   

     Table 5.  Top five worst performing route-directions by individual performance indicators 

 

The above findings re-emphasize two important points.  First, validly combining a variety 

of performance measures into a single indicator makes it much easier to identify problem 

routes.  If the four original indicators had been used instead of the one summary measure, 

Δ% Longer Running Time Δ% Shorter Running Time Route-
direction Mean Variance

Route-
direction Mean Variance

P 113.87 177.11 F 28.51 0.36
h 104.28 251.09 U 26.94 0.93
C 80.41 205.11 f 26.53 3.03
l 73.33 53.74 A 23.57 0.95
L 70.67 110.48 E 22.92 1.59
    

Δ% Longer Headway Δ% Shorter Headway Route-
direction Mean Variance

Route-
direction Mean Variance

W 105.90 257.35 w 55.21 7.81
w 99.00 324.19 W 54.83 15.37
a 81.17 146.69 j 53.30 6.94
j 78.71 94.08 a 51.56 11.59
S 74.77 181.00 L 47.42 25.91
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identifying those routes most in need of action would have been very difficult if not impossible.  

Second, use of statistical significance allows management to concentrate on those routes that 

truly are in trouble and to avoid taking action on those routes whose scores are within the range 

of normal random variation. 

5 Summary and Conclusions 

This study presented a Panel DEA framework for evaluating bus schedule adherence 

performance.  The proposed framework was demonstrated with a case study using twenty-four 

CTA bus routes for a twenty-nine-week period between January and June 2006.  The bus 

schedule adherence performance indicators, namely running time adherence and headway 

regularity, were derived from CTA’s archived bus AVL data.  Compared to assessing bus 

schedule adherence based on partial performance indicators historically used by transit 

agencies, the Panel DEA-based framework demonstrates clear superiority in terms of providing 

a comprehensive performance measure that identifies problems quickly and accurately. 

The contributions of the paper to the transit literature are four-fold.  First, this paper has 

demonstrated a new application of AVL data for transit operations.  Because AVL data is 

continuously collected and quickly available, management can use the information to promptly 

address service reliability problems.  Moreover, trend analysis and panel data analysis become 

practical when AVL data are available.   

Second, this paper presents a mathematically and economically plausible method to 

construct a comprehensive measure of service reliability from multiple partial reliability 

indicators, by using DEA.  This DEA indicator is put into even better use than those in all past 

transit DEA studies because it not only identifies the benchmark DMUs but also prioritizes those 

in need of attention.  Prior transit DEA studies have usually addressed the former but not the 
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 latter.  In addition, the DEA indicator developed herein is a pure effectiveness measure in that it 

utilizes only outputs, instead of a ratio of outputs to inputs that have been employed in all past 

transit DEA studies.  It is likely that there are other transit goals that could be best measured by 

considering only outputs rather than output-input ratios. 

Third, by coupling PDA with DEA, it has been demonstrated in this paper that the 

traditional deterministic DEA can be extended to stochastic DEA and thus statistical inferences 

can be made.  This is the second application of Panel DEA to transit and the first to apply the 

methodology to performance evaluation of a transit agency’s subunits.  Unlike all previous 

transit DEA papers, this paper is built upon the concept of quality control, realized by comparing 

each DMU’s current performance level to a statistical confidence interval based on its past 

performance. 

Lastly, this paper is among the first that have extended the use of DEA from the 

traditional comparisons among transit organizations to performance assessment of 

organizational subunits performing parallel activities.   

Nonetheless, there are limitations in this study that require further research.  It is 

recognized that the four on-time performance indicators used in this study do not reflect every 

aspect of bus service reliability.  For example, no measure of passenger related activity was 

considered.  Nor have measures of traffic conditions or environmental factors been taken into 

consideration.  The running time and headway based indicators were adopted mainly because 

they have been used by transit agencies (e.g., CTA) and they were readily derived from the 

archived AVL data.  Some of the other measures may be derived from the bus automatic 

passenger count (APC) data; others may require different data sources such as traffic sensor 

data.  The real-time AVL data is another source of data, which contain travel speed information.   

With more advanced data collection technologies available in public transportation systems, the 

framework presented in the paper should readily apply.   
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Future research is also needed to identify causes for poor bus schedule reliability.  This 

is outside the scope of this paper but no-doubt a close-to-the-heart issue to transit managers.  

Panel DEA tells which routes demand immediate attention; however, it does not identify the 

causes of the problems.  Continuous research effort in the area is desired and will surely 

elevate the value of the research even further. 
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