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Using Panel Data Analysis to Estimate Confidence 
Intervals for the DEA Efficiency of Individual Urban 
Paratransit Agencies 
 
Abstract 
 
This paper demonstrates a methodology using Panel Data Analysis to estimate 
confidence intervals for the Data Envelopment Analysis (DEA) efficiency of individual 
urban paratransit agencies and the statistical significance of trends in individual agency 
efficiency.  The procedure accounts for stochastic variations of the inputs and outputs of 
the target agency as well as stochastic variations of the inputs and outputs of its 
efficient benchmark peers.  The procedure is demonstrated using nine years of data 
from 34 urban paratransit agencies. 
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Introduction, Literature Review, and Paper Overview 

This paper demonstrates the use of Panel Data Analysis (PDA) to estimate confidence 

intervals and the statistical significance of trends for the technical efficiency of individual 

Decision Making Units (DMUs), in this case urban paratransit agencies.  We use DEA to 

estimate the technical efficiency ( )θ of each DMU in each year, and then use PDA to estimate a 

confidence interval for each θ  in each year and the statistical significance of trends in its value.  

PDA makes the standard parametric assumptions (residuals are independent and identically 

distributed (i.i.d.) and Normally distributed).  Because DEA scores cannot be assumed to meet 

these conditions, we test for violations, and, where violations occur, adjust for them.   

 Developing statistical methodologies to deal with DEA scores has become an important 

theme in DEA research, as evidenced by several compilations including Grosskopf (1996), and 

Cooper, Seiford and Zhu (2004).  As Chambers and Färe (2004, p. 329) recently noted, “more 

and more effort has been devoted to determining the statistical properties of the DEA 

approach.”   

Bootstrapping of cross-sectional data has been used to estimate the confidence intervals 

for the efficiencies of fixed input-output sets, with examples of the methodology and applications 

including Simar and Wilson (2000a; 2000b; 2007), Hollingsworth, Harris and Gospodarevskaya 

(2002), Gonzalez and Miles (2002), Latruffe, Balcombe, Davidova and Zawalinska (2004), and 

Zelenyuk and Zheka (2006).  This bootstrapping research, however, treats the inputs and outputs 

of the target DMU as fixed, that is, the effects of stochastic variations in the target DMU’s inputs 

and outputs are not taken into consideration (Simar and Wilson, 2000b, p. 67).  Only production 

frontier variations are reflected in the bootstrapped confidence intervals around the target DMU’s 

efficiency scores.   

The need to consider the stochastic inputs and outputs of a target DMU has been 

recognized by others (Atkinson and Wilson, 1995; Löthgren, 1999; Löthgren and Tambour, 
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1999a; Löthgren and Tambour, 1999b; Löthgren, 2000).  This need can be met only if there are 

multiple observations of a DMU’s inputs and outputs, which, of course, is true for all stochastic 

variables.  Therefore, to construct a confidence interval that reflects the stochastic variations of 

both the target DMU and the production frontier, it is necessary to make use of panel 

(longitudinal) data.  

Several researchers have used panel data to mitigate the level of noise in DEA scores.  

Gong and Sickles (1992) reduce noise in target DMU scores by averaging each DMU’s DEA 

scores across all years.  Sengupta (1998b), Holland and Lee (2002), and Ruggiero (2004) 

mitigate noise in both the frontier and the target DMUs by averaging each DMU’s inputs and 

outputs across all years and then doing one DEA on the averages.  Sengupta (1998a) uses the 

longitudinal aspects of the data to filter out noise and then applies DEA to the filtered data.  

None of these papers develop statistical significance tests or confidence intervals within which 

the efficiency of each DMU is expected to fall, thereby not taking advantage of much of the 

value of panel data. 

Atkinson and Wilson (1995) were the first to illustrate a procedure for estimating 

confidence intervals for individual DMU efficiency, using bootstrapping with panel data.  They 

use bootstrapping because the asymptotic properties necessary for valid application of 

parametric methods should not be assumed for small DEA samples.  However, bootstrapping 

cannot take advantage of the extensive body of knowledge and methodologies available for 

parametric models.   

If a sample is not small, PDA can do so.  PDA, sometimes referred to as Longitudinal 

Modeling or Time-series Cross-section Data Analysis, is well-known and is even the subject of 

many recent texts, such as Wooldridge (2002), Hsiao (2003), Frees (2004), Skrondal and Rabe-

Hesketh  (2004), Baltagi (2005) and Baum (2006).  PDA has been used in many Stochastic 
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Frontier Analysis studies, and is examined at length in Kumbhakar and Lovell’s (2000) widely-

cited text. 

However, when the response variables are DEA scores, PDA seldom has been used.  In 

fact, the only publication that we identified was that of Steinmann and Zweifel’s (2003) Applied 

Economics paper, which uses PDA to identify environmental influences on DEA scores.  PDA 

never has been used with DEA scores to estimate individual DMU confidence intervals or the 

statistical significance of trends, or to validate i.i.d. and Normality requirements. 

This paper progresses as follows.  The inputs and outputs are identified and justified.  

The DEA linear programming model is presented, followed by the PDA statistical models.  The 

results of comprehensive diagnostic tests on the regression residuals are presented.  Finally, 

for each DMU, the trends and confidence intervals that result from the procedure are examined. 

DEA Inputs and Outputs 

We use data from 34 Canadian urban paratransit agencies for the nine years 1996-

2004 (Canadian Urban Transit Association, 2005).  Paratransit generally is defined as public 

transportation that is demand-responsive rather than operating on a fixed schedule, and 

usually is door-to-door.  Paratransit vehicles typically include cars, vans and small buses.  In 

the case of the Canadian agencies, paratransit service is limited to disabled individuals and 

their caregivers. 

Inputs are (1) number of disabled individuals and caregivers registered for the service, 

(2) annual operating expenses of paratransit service dedicated to disabled individuals, and (3) 

annual operating expenses of non-dedicated paratransit service attributable to disabled riders.  

Outputs are (1) annual number of passenger trips on paratransit service dedicated to disabled 

individuals, (2) annual number of passenger trips attributable to disabled passengers on non-

dedicated paratransit service, (3) annual operating revenue from dedicated paratransit service, 
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and (4) annual operating revenue from non-dedicated paratransit service attributable to 

disabled passengers.   

Two key outputs of Canadian urban paratransit agencies are disabled-passenger trips 

and operating revenue (mostly from fares).  Fare levels vary significantly across systems and 

years; consequently, the passenger trips and revenue values measure two unique outputs.  

Agencies obtain different mixes of these two outputs, because increases in one have always 

led to decreases in the other when fares are changed, holding inputs constant (Litman, 2004).   

Both outputs are produced by two distinct organizational subunits: a subunit serving 

only disabled users (dedicated service), and a subunit serving both disabled and non-disabled 

users (non-dedicated service).  Dedicated service is provided in vehicles exclusively dedicated 

to the transport of persons with disabilities, which may be operated by the agency itself or 

subcontracted.  Non-dedicated service is provided in vehicles that serve both disabled and 

non-disabled customers, often taxicabs subcontracted by the paratransit agency to transport its 

disabled clients.  

Operating expenses are used as a proxy for physical inputs.  Universally, in paratransit 

operations, a very high percentage of operating expenses is for employee compensation.  For 

example, for U.S. paratransit in 2004, 82 percent of operating expenses was for employee 

compensation, followed by 6 percent for fuel, 6 percent for insurance, 5 percent for materials 

and supplies and 1 percent for utilities (Danchenko, 2006).  And, average compensation varies 

substantially among the 34 Canadian agencies, with the 2004 operator top base wage rate 

ranging from $14.82 to $24.32 per hour.  Typically, most other wage rates in the dedicated 

service subunit are indexed on the top operator base wage rate, which also can serve as a 

proxy for wage rate variation in the non-dedicated subunit because it reflects local labor market 

conditions.  It is likely that other operating expenses also will show somewhat similar variation 
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due to local cost differences.  Therefore, we have divided the operating expense variables by 

each agency’s top operator base wage rate, which should yield a reasonable proxy for physical 

inputs. 

For this analysis, all inputs and outputs are limited to those related to disabled 

passengers.  However, because there are two quite unique methods of providing 

transportation (dedicated or non-dedicated service), and two different organizational subunits 

with independent production processes, inputs and outputs from each are entered as separate 

variables.   

The reason that this disaggregation is necessary is to avoid aggregation bias in the 

reported DEA scores.  The four potential sources of aggregation bias are: inter-input 

aggregation (sum of the quantities of different types of inputs weighted by prices), inter-output 

aggregation (sum of the quantities of different types of output weighted by prices), intra-input 

aggregation (sum of the quantities of a given type of input used by multiple subunits or 

production processes), and intra-output aggregation (sum of the quantities of a given type of 

output produced by multiple subunits or production processes).  Recent research 

demonstrates that, for inputs and outputs that are allocable, disaggregated data must be used 

to avoid bias in technical efficiency scores (Tauer, 2001; Färe and Zelenyuk, 2002; Färe, 

Grosskopf and Zelenyuk, 2004; Färe and Grosskopf, 2004; Barnum and Gleason, 2005; 

Barnum and Gleason, 2006a; Barnum and Gleason, 2006b; Barnum and Gleason, 2007b).   

The first input, “number of disabled individuals and caregivers registered for the 

service,” is not allocable.  Registrants requesting transportation are assigned to a dedicated or 

non-dedicated vehicle after a request is received, with consideration given to the person’s 

disability, vehicle availability at the desired time, and relative cost.   

However, the other two inputs are allocable.  If operating expenses were to be 

aggregated across the two subunits, then intra-input aggregation would be present.  Intra-
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output aggregation would be present if disabled passenger trips were to be aggregated across 

the two subunits, and if operating revenue were to be aggregated across the two subunits. 

Such aggregation can cause substantial levels of downward bias in an organization’s technical 

efficiency scores, with the amount of bias varying greatly depending on the degree of allocation 

efficiency (Barnum and Gleason, 2006a; Barnum and Gleason, 2007b). 

There is no inter-output aggregation, but using operating expenses as aggregations of 

physical inputs does subject the analysis to potential inter-input aggregation bias.  However, 

because there is very little substitutability among the various inputs, such as operators, 

mechanics, fuel, and vehicles, any inter-input aggregation bias should be very minor at most.   

In conclusion, the three inputs and four outputs account for variables considered key by 

this industry, as reflected in the set of published performance indicators that are used to 

compare agencies (Canadian Urban Transit Association, 2005).   

The DEA Model 

For each of the nine years of data, DEA scores are computed using a linear 

programming model (1) that is output oriented and assumes constant returns to scale.  The 

DEAs were conducted with Scheel’s EMS software (2000).  For each of the j DMUs (j = 

1,…,34), there are data on the n = 3 inputs x , and on the m = 4 outputs y 

.  The DEA score θ identifies the technical super-efficiency of the target DMU k 

(Andersen and Petersen, 1993).  Because our model is output-oriented, efficient DMUs’ scores 

will be in the interval ( , with smaller values indicating increasing efficiency; and, inefficient 

DMUs’ scores will be in the interval

11 34,3( ,..., )x x

11 34,4( ,..., )y y

]0,1

(1, )∞ , with larger values indicating decreasing efficiency.   
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The conventional measure of technical efficiency, with the range[1 , would have 

been appropriate if our interest had focused on identifying the production frontier, those DMUs 

defining it, and the distance of inefficient DMUs from it.  In that model, efficient DMUs are 

compared only to themselves.  Thus, if an efficient DMU increases its outputs or decreases its 

inputs, everything else equal, its DEA score of one would remain unchanged in spite of its 

improved performance.  Using super-efficiency, changes in the performance of both efficient 

and inefficient DMUs will be reflected in their DEA scores.  Also, we are interested in always 

benchmarking the performance of the target DMU on its efficient peers.  Super-efficiency 

scores always benchmark the target DMU on its efficient peers regardless of its own efficiency 

level.   

, )∞

A second reason for using super-efficiency scores is to avoid a limited-value response 

variable in second-stage regressions, as discussed by Coelli et al (2005).  Conventional 

technical efficiency scores yield a limited-value variable, because an efficient DMU’s score of 1 

will remain unchanged even if it were to become more efficient by increasing outputs or 

decreasing inputs.  Super-efficiency scores are an observable proxy for latent variable values 

underlying conventional efficiency scores.  Because their range is not limited, this precludes 

the need to estimate the latent values using sample-selected, truncated or censored 

regression (as addressed by Breen (1996) in his discussion of limited-value variable methods).   

  0jλ ≥ 1,2,...,34;j j k= ≠    (1)  
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Statistical Models 

The initial model was  

( 1)jt j j jtt uθ α β= + − +   j = 1,…,34; t = 1,…,9 (2) 
 

where jtθ is the super-efficiency score of DMU j in year t, jα  is the estimated efficiency of 

DMU j in year 1, jβ  is the annual change in the efficiency of DMU j, and is the random 

error in the super-efficiency score (

jtu

jtθ ) of DMU j in year t.  The DMUs showed differing trends 

in efficiency over the nine year period, as reflected by differing estimated values for their β  

coefficients.  Therefore Equation 2 includes a variable adjusting efficiency for the year 

involved, which permits a heterogeneous trend in each DMU’s efficiency over the nine-year 

period.  The fitted value of the efficiency of DMU j is jα  in year 1, j jα β+  in year 2, and so on 

up to 8j jα β+ in year 9.  Statistical computations were conducted with Stata 9.2 (StataCorp, 

2007). 

Residual Diagnostics 

In order to use parametric analysis for developing valid confidence intervals from a 

correctly specified regression model for panel data, the errors  must be i.i.d. and Normally 

distributed, or, if they are not, the violations must be addressed in the statistical model.  

( jtu )

It never should be assumed that these requirements are met when the dependent 

variable is a DEA score, because each DMU’s score is influenced by the performance of other 

DMUs.  If the same DMUs consistently influence each other, it may cause correlations among 

their error terms.  Such contemporaneous correlation would invalidate the requirement for 

independent residuals.  There may well be other complex and unknown effects on the 

residuals caused by the interdependence of DEA scores, so the presence of i.i.d. and 
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Normality should always be confirmed, and model corrections made when they are not 

present. 

Homoskedasticity 

For panel data, residual variance should be tested for (1) homoskedasticity across 

panel members, and (2) relationships between variable size and residual variance.  Although 

homoskedasticity across panel members would not be necessary if we were diagnosing each 

set of nine residuals individually (which cannot be done because nine are too few 

observations), it is necessary when diagnosing all 306 residuals at the same time.  That is, 

unless the variances are homoskedastic, the remaining diagnostic tests for i.i.d. and Normality 

cannot be validly performed. 

Equation 2 was solved using data from the 34 paratransit DMUs, and the variances of 

the nine residuals of each DMU were computed.  Subjecting these variances to the Breusch-

Pagan/Cook-Weisberg test for heteroskedasticity among the DMUs showed that the 

heteroskedasticity is statistically significant [ 2χ 2χ = 191.25, P( (33) > 191.25) < 0.00005]. 

Because the estimated residuals of each DMU are known, we divide each dependent 

variable by the standard deviation of its DMU’s nine residuals.  Thus, ˆ1/
jujw σ= , where is 

the weight assigned to the scores of DMU j, and 

jw

ˆ
juσ is the standard error of the regression 

equation residuals for DMU j.  Replacing Equation (2) with (3):  

 ( 1)j jt j j jtw t uθ α β= + − +   j = 1,…,34; t = 1,…,9 (3) 
 

Subjecting the residuals from Equation 3 to the Breusch-Pagan/Cook-Weisberg test for 

heteroscedasticity among the DMUs yields no statistically significant difference [ 2χ < 0.005, 

P( 2χ (33)  > 0.005) = 1.0000].  The Breusch-Pagan/Cook-Weisberg test for heteroskedasticity 

of error terms yields no statistically significant relationships between variance of the residuals 
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and (1) fitted scores, on E(jtu j jtw θ 2χ 2χ), [ < 0.005, P( (1)  > 0.005) = 0.9888], (2) time, 

on t, [jtu 2χ  = 0.93, P( 2χ (1)  > 0.93) = 0.3357)], and (3) weighted scores, onjtu j jtw θ 2χ, [ = 

0.02, P( 2χ (1)  > 0.02) = 0.8825].  In sum, homoskedastic variance is present when the 

weighted dependent variable is utilized.  Therefore, the rest of this paper is based on the 

model in Equation 3. 

Independence of Error Terms 

There are two issues of concern.  The first issue is the potential for correlation of errors 

over time, that is, serial correlation.  The second issue is the potential for cross-sectional 

correlation of the error terms of the DMUs, also called contemporaneous correlation.  To test 

for first-order serial correlation, we regressed each residual on the prior year’s residual, 

eliminating the first year from the regression since no prior residual was available (Equation 4).  

We followed the advice of Wooldridge (2002) and ran a pooled OLS regression with a fully 

robust standard error of   

(4) $ $
, 1.. .on .jt ju u − t = 2,…,9; j = 1,…,34   t   

 

2RThere was no significant relationship [ = 0.0024, F = 0.72, P(F (1, 270) > 0.72) = 0.3966].   

The second potential influence on the independence of error terms involves the effect 

of interdependence between DEA scores of two or more DMUs as described by Xue and 

Harker (1999) and  Simar and Wilson (2007).  Tests for contemporaneous correlation cannot 

be conducted if the data are treated as separate cross-sections, or if each DMU’s data are 

treated as a separate time-series.  Such tests are available if the data are treated as a panel 

and analyzed with PDA.   
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Contemporaneous correlation does not bias the expected value of estimated efficiency 

levels, but variance estimates can be more precise if the correlation is taken into account.  

That is, if the residuals are contemporaneously correlated to a statistically significant degree, 

one could use such methods as Generalized Least Squares to decrease the estimated 

standard errors.   

If the number of DMUs exceeds the number of time periods, as is true for our data, then 

tests for cross-sectional independence of residuals include Freedman’s AVER  and Frees’ 

2
AVER evaluated with his Q-distribution (Frees, 1995; Frees, 2004), Pesaran’s cross-

sectional dependence test (Baum, 2006, p. 222), and a test for pairwise correlation of 

residuals.  The results are CD = 0.915, P( CD > |0.915| ) = 0.3602; and 

CD

AVER  = 11.969, 

P( AVER > 11.969) = 0.9997.  None of the pair-wise correlations were statistically significant at 

the 0.05 level, for either Bonferroni or Sidak-adjusted significance tests.  However, Frees’ 2
AVER  

= 1.127 is statistically significant at the 0.05 level.   

Because only three of the four tests reported no statistically significant 

contemporaneous correlation, the evidence is not unanimous.  The conservative decision, 

which we adopt, is to assume that there is no true cross-correlation.  This is conservative 

because models accounting for cross-correlation will estimate narrower variances than i.i.d. 

variances, whether or not cross-correlation is truly present. 

Normality of Residuals 

The hypothesis that the residuals are Normally distributed could not be rejected 

according to the Shapiro-Wilk W [W = 0.994, V = 1.259, z = 0.538, P(z > 0.5380) = 0.295], the 

Shapiro-Francia W' [  = 0.006, = 1.004, z = 0.008, P(z > 0.008) = 0.497], and a 'W 'V
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2χ 2χskewness/kurtosis test [P(skewness) = 0.597, P(kurtosis) = 0.055, joint adj. (2) = 3.98, P(  

> 3.98) = 0.136]. 

Summary 

The hypotheses that the residuals from Equation 3 are i.i.d. and Normally distributed 

cannot be rejected.  This demonstrates that violations of the standard parametric assumptions 

by DEA residuals are not inevitable.  It may be worthwhile to recall that any disturbance term 

encapsulates complicated, unidentified influences, so it is never truly random.  But, a residual 

can be treated as random if it meets appropriate statistical tests for randomness (Neter and 

Wasserman, 1974; Frees, 2004).   So, we make the standard asymptotic assumptions in 

developing confidence intervals. 

Results   

Because of the weighting of the dependent variable, the individual DMU parameter 

estimations are not of interest in their own right, and are only needed in order to predict the 

range within which a DMU’s efficiency will occur.  It is worth noting that 97 percent of the 

variance in efficiency scores is explained by differences between the DMUs [ 2R = 0.9675, F = 

105.64, P(F(67, 238)  >105.64) < 0.00005].  

Because many DMUs exhibit linear trends in efficiency over the nine year period, it is 

necessary to include a variable adjusting efficiency for the year involved, as is done in equation 

3.  If the yearly trend variables are not included, R-square decreases from 0.97 to 0.85, with 

the difference between the full and reduced models being statistically significant at the 0.05 

level.  Thus, the expected efficiency of a DMU depends on the year of interest in many of the 

cases.   

Table 1 reports the estimates for 2004.  The range is based on the standard error of 

prediction of the mean value, at the 0.90 level of confidence.  The point estimates for 17 DMUs 
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showed them to be inefficient, but 4 of these were not inefficient to a statistically significant 

degree.  Of the 17 DMUs with efficient point estimates, 7 were not efficient to a statistically 

significant degree.  Therefore, at least for Canadian paratransit properties, the point estimates 

of efficiency for a given year should not be used to identify their levels of efficiency, because 

the range within which their efficiency could occur is often going to overlap the inefficient and 

efficient ranges.  Thus, whether 11 of the 34 systems were or were not efficient cannot be 

reported with statistical confidence.  

Whether trends in efficiency are present to a statistically significant degree also is likely 

to be of interest.  These are shown in the last column of Table 1.  Because the DEA model is 

output oriented, higher scores mean lower efficiency.  Therefore, a negative coefficient means 

efficiency is increasing, and a positive coefficient that efficiency is decreasing.  For the DMUs, 

21 report increasing efficiency over the nine years involved, 15 of which show statistically 

significant improvements.  And, 13 report decreasing efficiency over the nine year period, 8 of 

which are worse to a statistically significant degree.   

Conclusions   

As exhibited in this paper, Panel Data Analysis offers a useful methodology for 

estimating confidence intervals and the statistical significance of trends for the DEA efficiency 

of individual DMUs.  It addresses stochastic variations in the data of the target DMU and the 

production frontier.  It permits testing of residuals for conformity to the standard parametric 

assumptions, and provides methods for correcting violations.  Although not addressed herein, 

PDA provides more valid and powerful procedures than cross-sectional analysis for estimating 

the effects of the environment on efficiency.  However, as Barnum and Gleason (2007a) have 

demonstrated, using DEA scores as the response variable in such regressions can result in 

inefficient and inconsistent estimates. 
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Table 1.  2004 Superefficiency Scores, 34 Canadian Paratransit Properties 

2004 Superefficiency Score 
(0.90 Confidence Interval) 

 Mean 
Annual 
Change jDMU

 Lower 
limit 

Upper 
limit 9( )jE θ ˆ( )jβConclusion   

1 0.67 0.59 0.76 Efficient * -0.138* 
2 1.25 1.12 1.37 Inefficient * 0.031- 
3 1.57 1.40 1.73 Inefficient * 0.089* 
4 0.72 0.59 0.84 Efficient * 0.078* 
5 0.85 0.46 1.24 Efficient -0.111* 
6 0.63 0.51 0.76 Efficient * -0.068* 
7 0.80 0.64 0.96 Efficient * -0.020- 
8 1.20 1.04 1.36 Inefficient * 0.047* 
9 0.95 0.86 1.04 Efficient 0.013- 

10 0.74 0.51 0.97 Efficient * -0.040* 
11 1.19 0.95 1.42 Inefficient -0.030* 
12 0.63 0.46 0.80 Efficient * -0.031* 
13 1.00 0.90 1.11 Efficient -0.039- 
14 0.98 0.92 1.03 Efficient -0.103* 
15 1.18 0.99 1.37 Inefficient -0.025* 
16 1.02 0.96 1.09 Inefficient -0.086* 
17 0.90 0.62 1.19 Efficient -0.010- 
18 1.48 1.32 1.64 Inefficient * 0.044* 
19 1.41 1.25 1.57 Inefficient * 0.044* 
20 0.69 0.60 0.79 Efficient * 0.036- 
21 0.85 0.79 0.91 Efficient * -0.002- 
22 1.15 1.05 1.25 Inefficient * -0.081* 
23 1.32 1.21 1.43 Inefficient * 0.066* 
24 0.87 0.80 0.95 Efficient * -0.045* 
25 1.11 1.01 1.21 Inefficient * -0.161* 
26 0.48 0.32 0.64 Efficient * -0.065* 
27 2.09 1.91 2.27 Inefficient * 0.018- 
28 0.87 0.68 1.05 Efficient -0.035- 
29 1.43 1.33 1.53 Inefficient * -0.051* 
30 1.68 1.58 1.77 Inefficient * 0.213* 
31 1.23 1.17 1.29 Inefficient * -0.048- 
32 0.94 0.72 1.15 Efficient 0.016- 
33 1.01 0.93 1.09 Inefficient -0.134* 
34 1.25 1.10 1.41 Inefficient * 0.053* 

* Statistically significant at the 0.9 two-tailed level. 
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